parinzee commited on
Commit
632017e
·
1 Parent(s): a7c7672

initial training

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 236.40 +/- 48.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f62f54040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f62f540d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f62f54160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f62f541f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6f62f54280>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f62f54310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f62f543a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f62f54430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f62f544c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f62f54550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f62f545e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f62f504b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673188775496386390, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqACb0uaqc/TuMVvlrj+772lPa7YzZkuwAAAAAAAAAA+lk5vsGRi7zJvry6omQIuRGk9T2govI5AACAPwAAgD/AYvs9nzPju+Cbi70nxYW9Zbw4vKVzWTwAAIA/AACAP5I/nb7a4EY/1PlGvqAi374Dwg6+fx0nPAAAAAAAAAAAIwKQvjr3JD7d5s49jEgjvnh4rLwLHpg8AAAAAAAAAADzkrI9SLuAuqbJb7kr08S20ySJOdlSljgAAAAAAACAP6N8a74lYwg+YMJQPSKTQb7lsss8WIAgugAAAAAAAAAAMwl6vfPvpT8B/jm/hYI6v0x4bTx++fG9AAAAAAAAAADAiY0+7fLqPipNm705WsO+Zy6tPWy2h70AAAAAAAAAAM0MDzvAUZ4/7k/pPAc8Jb8ghGo8z/SYvAAAAAAAAAAA0HhVvnTZJb3WHDE9UC6VvL3xTz6JBDa+AACAPwAAgD9NYDe+W6yDvAvt2Ls+Oju6CIHfPbWKFjsAAIA/AACAP1qe2r1ca1i6mm/cO6MEKDOQ0WG6i5wqMwAAgD8AAAAA81GxPewJhrnJHEW5VtSPNXKZazpS5Gg4AACAPwAAgD+TvEE+YoaiPvilsr2WZ4a+fhtSPa4oRbwAAAAAAAAAAG7Shr5u8ci8F9sbPYoSPLumOi0+BIunOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXrBpzkobECUhpRSlIwBbJRNDgGMAXSUR0CoHE7MPjGUdX2UKGgGaAloD0MIXtkFg2skZECUhpRSlGgVTegDaBZHQKgd4+36Q/51fZQoaAZoCWgPQwihnj4C/4ZxQJSGlFKUaBVL/GgWR0CoHk2QOnVHdX2UKGgGaAloD0MI58jKLwMPcECUhpRSlGgVS+BoFkdAqB7JkNFz+3V9lChoBmgJaA9DCJlnJa345ENAlIaUUpRoFUvhaBZHQKgfNw1ivxJ1fZQoaAZoCWgPQwhVFK+ytllXQJSGlFKUaBVN6ANoFkdAqB+J9d/rjnV9lChoBmgJaA9DCNhEZi5w+T5AlIaUUpRoFUvAaBZHQKgfpwkPczt1fZQoaAZoCWgPQwj+1k6UhNhrQJSGlFKUaBVNBQFoFkdAqB+nQKKHf3V9lChoBmgJaA9DCMn/5O9erWxAlIaUUpRoFUv7aBZHQKggmq8UVSJ1fZQoaAZoCWgPQwjVPEfkexdwQJSGlFKUaBVL7GgWR0CoILaYVqN7dX2UKGgGaAloD0MIeEZblUTUWUCUhpRSlGgVTegDaBZHQKhQbz90ihZ1fZQoaAZoCWgPQwj2lQfpqZJwQJSGlFKUaBVL4WgWR0CoUHn2ys0YdX2UKGgGaAloD0MIPZrqyfw/WECUhpRSlGgVTegDaBZHQKhQw0dilSF1fZQoaAZoCWgPQwhHAg02dSY6wJSGlFKUaBVLx2gWR0CoUTtUfgaWdX2UKGgGaAloD0MIFjPC2wMTYECUhpRSlGgVTegDaBZHQKhRm/Y8Md91fZQoaAZoCWgPQwivCtRicAFuQJSGlFKUaBVNEQFoFkdAqFG6mwaBJHV9lChoBmgJaA9DCHQoQ1VMk3FAlIaUUpRoFUv6aBZHQKhRw3EQ5FR1fZQoaAZoCWgPQwht5LopZRduQJSGlFKUaBVL3GgWR0CoUgAvDgqFdX2UKGgGaAloD0MIouvCDw5EcUCUhpRSlGgVTSoBaBZHQKhTXJeVs1t1fZQoaAZoCWgPQwhNTYI3JMxwQJSGlFKUaBVNGAFoFkdAqFQAxpL26HV9lChoBmgJaA9DCCcyc4HLb0pAlIaUUpRoFUubaBZHQKhUYogFHJ91fZQoaAZoCWgPQwgmpguxep5wQJSGlFKUaBVL42gWR0CoVNRnOB1+dX2UKGgGaAloD0MIevtz0RAab0CUhpRSlGgVTQwBaBZHQKhVTrPdEb51fZQoaAZoCWgPQwgNG2X9ZgJOQJSGlFKUaBVLxWgWR0CoVVLpiZv2dX2UKGgGaAloD0MIaoR+pl52bkCUhpRSlGgVS/1oFkdAqFXXj0cwQHV9lChoBmgJaA9DCFRTknU4eWxAlIaUUpRoFUvgaBZHQKhWGzFdcB51fZQoaAZoCWgPQwhYkdEBSTBZQJSGlFKUaBVN6ANoFkdAqFZVNpM6BHV9lChoBmgJaA9DCBUA4xk0S25AlIaUUpRoFU2ZAWgWR0CoV911GLDRdX2UKGgGaAloD0MIJCao4duHYECUhpRSlGgVTegDaBZHQKhX8n1Fpfx1fZQoaAZoCWgPQwiZoIZvYf5uQJSGlFKUaBVL4GgWR0CoWCYjKPn0dX2UKGgGaAloD0MI9+rjoe86cECUhpRSlGgVTQgBaBZHQKhYO2b5M111fZQoaAZoCWgPQwh2Ul+W9odsQJSGlFKUaBVL7mgWR0CoWR5gPVd5dX2UKGgGaAloD0MISmBzDp49WkCUhpRSlGgVTegDaBZHQKhZURLbpNd1fZQoaAZoCWgPQwj752nAIINCQJSGlFKUaBVL5mgWR0CoWW2OyVv/dX2UKGgGaAloD0MI8X7cfnnXckCUhpRSlGgVS/FoFkdAqFp8/D+BH3V9lChoBmgJaA9DCAMGSZ9WrHFAlIaUUpRoFU0MAWgWR0CoWoJtSAH3dX2UKGgGaAloD0MIdqp8z0i7XECUhpRSlGgVTegDaBZHQKhbWtFKCg91fZQoaAZoCWgPQwhPBHEezvltQJSGlFKUaBVL3mgWR0CoW7Zi3G4rdX2UKGgGaAloD0MIdHlzuNbYb0CUhpRSlGgVS91oFkdAqFvpv73wkXV9lChoBmgJaA9DCEcBomDGwWtAlIaUUpRoFUviaBZHQKhdFglWwNd1fZQoaAZoCWgPQwjsvmN4rKlxQJSGlFKUaBVL3WgWR0CoXVUypJf6dX2UKGgGaAloD0MIeqnYmNenb0CUhpRSlGgVS/NoFkdAqF2hT2nKn3V9lChoBmgJaA9DCJGadjHNJC9AlIaUUpRoFUvNaBZHQKheSY6XBxh1fZQoaAZoCWgPQwiLVBhbyFpxQJSGlFKUaBVL4WgWR0CoXqpFspG4dX2UKGgGaAloD0MIVpkprT9OckCUhpRSlGgVS9loFkdAqF991EE1VHV9lChoBmgJaA9DCH5zf/U4uWNAlIaUUpRoFU3oA2gWR0CoYBwbVBlddX2UKGgGaAloD0MIRga5i7BLcECUhpRSlGgVS+doFkdAqGAwI4VARnV9lChoBmgJaA9DCDSdnQyONnFAlIaUUpRoFUvLaBZHQKhhSIgNgBt1fZQoaAZoCWgPQwgIrvIEQgdiQJSGlFKUaBVN6ANoFkdAqGGSvmoze3V9lChoBmgJaA9DCN1FmKLcDnBAlIaUUpRoFUvlaBZHQKhjcDYAbQ11fZQoaAZoCWgPQwiYTYBhubJwQJSGlFKUaBVL4mgWR0CoZE7L2YfGdX2UKGgGaAloD0MIZAW/DTHRX0CUhpRSlGgVTegDaBZHQKhkoU21lXl1fZQoaAZoCWgPQwjlmCzu/ztwQJSGlFKUaBVL3mgWR0CoZOSJsO5KdX2UKGgGaAloD0MIZXH/kemsNUCUhpRSlGgVS7RoFkdAqGVkG/vfCXV9lChoBmgJaA9DCMvydRn+um1AlIaUUpRoFUvhaBZHQKhmDgXMyJt1fZQoaAZoCWgPQwjdCIuKuCdsQJSGlFKUaBVNWAFoFkdAqGe9gpjMFHV9lChoBmgJaA9DCIeGxahr3V9AlIaUUpRoFU3oA2gWR0CoZ/2d3B55dX2UKGgGaAloD0MIQpjbvdy6X0CUhpRSlGgVTegDaBZHQKhpLKJ2t+11fZQoaAZoCWgPQwjpnJ/i+KlxQJSGlFKUaBVL/mgWR0CoaT23Sa3JdX2UKGgGaAloD0MIJEc6AyODMkCUhpRSlGgVS9toFkdAqGlS9K28ZnV9lChoBmgJaA9DCJ1jQPZ642BAlIaUUpRoFU3oA2gWR0CoagdH2AXmdX2UKGgGaAloD0MI4IYYr3mjcECUhpRSlGgVS/5oFkdAqGpKZYxL03V9lChoBmgJaA9DCDklICYhFHFAlIaUUpRoFU0MAWgWR0Coas35eqrBdX2UKGgGaAloD0MIyogLQKMNcUCUhpRSlGgVS/9oFkdAqGr/wsoUjHV9lChoBmgJaA9DCDTVk/nHZXBAlIaUUpRoFUvzaBZHQKhrUrnTy8V1fZQoaAZoCWgPQwgpmDEFa45iQJSGlFKUaBVN6ANoFkdAqGvVeyAxz3V9lChoBmgJaA9DCL37473qCmBAlIaUUpRoFU3oA2gWR0CobDDuKGcndX2UKGgGaAloD0MIGH0FaYbtcUCUhpRSlGgVS99oFkdAqGxrQswta3V9lChoBmgJaA9DCMtKk1JQwXBAlIaUUpRoFU0EAWgWR0CobNr/CIk7dX2UKGgGaAloD0MI2EXRA5/acUCUhpRSlGgVTQABaBZHQKht1JEpiJB1fZQoaAZoCWgPQwiVfsLZLR5vQJSGlFKUaBVL1mgWR0CobgZbhWHUdX2UKGgGaAloD0MIL4UHza7DcECUhpRSlGgVS+toFkdAqG4nNC7btnV9lChoBmgJaA9DCMuBHmobYnBAlIaUUpRoFU0hAWgWR0CobnrqMWGidX2UKGgGaAloD0MIOKRRgVNJcUCUhpRSlGgVTS0BaBZHQKhukS5AhSt1fZQoaAZoCWgPQwgPJsXHJ2NvQJSGlFKUaBVL6WgWR0CobtBHskY5dX2UKGgGaAloD0MI4c6Fkd5QcECUhpRSlGgVS/BoFkdAqG8bVJ+UhXV9lChoBmgJaA9DCLLZkeq7Jm9AlIaUUpRoFUvKaBZHQKhvQIuXeFd1fZQoaAZoCWgPQwiHp1fK8qBwQJSGlFKUaBVL6mgWR0Cob05ZB9kSdX2UKGgGaAloD0MInBa86CtsYkCUhpRSlGgVTegDaBZHQKhvz2nKnvV1fZQoaAZoCWgPQwhOuFfm7VRwQJSGlFKUaBVL3WgWR0Cob+LXtjTbdX2UKGgGaAloD0MI0o+GU6aAcECUhpRSlGgVS7doFkdAqG/ri0fHP3V9lChoBmgJaA9DCFRuopYmJXFAlIaUUpRoFUveaBZHQKhwGGSIP9V1fZQoaAZoCWgPQwhA9+XMdipiQJSGlFKUaBVN6ANoFkdAqHDrPyCnP3V9lChoBmgJaA9DCHbj3ZExrmNAlIaUUpRoFU3oA2gWR0CocSQ8OkLydX2UKGgGaAloD0MIRnpRu99nYkCUhpRSlGgVTegDaBZHQKhxobayrxR1fZQoaAZoCWgPQwiSBre1hY9IQJSGlFKUaBVLx2gWR0CocdV3dKukdX2UKGgGaAloD0MIqRPQRNjhcECUhpRSlGgVS/BoFkdAqHHh5ooNNXV9lChoBmgJaA9DCAwHQrKAEnFAlIaUUpRoFU0EAWgWR0CocegjY7JXdX2UKGgGaAloD0MIyQImcCtPcECUhpRSlGgVS+JoFkdAqHIEu6ErXnV9lChoBmgJaA9DCGzQl94+ynBAlIaUUpRoFUvHaBZHQKhyLE6T4cp1fZQoaAZoCWgPQwhD5sqg2tdvQJSGlFKUaBVNJgFoFkdAqHJ4Oz6acHV9lChoBmgJaA9DCAEYz6ChNW5AlIaUUpRoFUvXaBZHQKhy7fZVXFN1fZQoaAZoCWgPQwg3xk54CQBxQJSGlFKUaBVL5GgWR0CocxN2cJ+ldX2UKGgGaAloD0MIRyBe1y/HcUCUhpRSlGgVTQEBaBZHQKhzZ1EmY0F1fZQoaAZoCWgPQwg+sU6Vr/pxQJSGlFKUaBVL0WgWR0Coc8qUeMhpdX2UKGgGaAloD0MIhpM0f8xBb0CUhpRSlGgVTQ8BaBZHQKhz4ZXuE251fZQoaAZoCWgPQwhUxyqlJ2FwQJSGlFKUaBVNZAFoFkdAqHQutU4rBnV9lChoBmgJaA9DCF97ZkkAT3BAlIaUUpRoFU0VAWgWR0CodQzHjp9rdX2UKGgGaAloD0MI+tUcIBh1cUCUhpRSlGgVS+xoFkdAqHUlgjQiRnV9lChoBmgJaA9DCIJwBRSq23BAlIaUUpRoFUvoaBZHQKh1S7GvOhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-lunarlander-v2-baseline.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f91ea0ca1916a626d278366fe16d6aca58449ccc31f38de151531597b2342ff
3
+ size 147141
ppo-lunarlander-v2-baseline/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-lunarlander-v2-baseline/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f62f54040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f62f540d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f62f54160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f62f541f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6f62f54280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6f62f54310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f62f543a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6f62f54430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f62f544c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f62f54550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f62f545e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6f62f504b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673188775496386390,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqACb0uaqc/TuMVvlrj+772lPa7YzZkuwAAAAAAAAAA+lk5vsGRi7zJvry6omQIuRGk9T2govI5AACAPwAAgD/AYvs9nzPju+Cbi70nxYW9Zbw4vKVzWTwAAIA/AACAP5I/nb7a4EY/1PlGvqAi374Dwg6+fx0nPAAAAAAAAAAAIwKQvjr3JD7d5s49jEgjvnh4rLwLHpg8AAAAAAAAAADzkrI9SLuAuqbJb7kr08S20ySJOdlSljgAAAAAAACAP6N8a74lYwg+YMJQPSKTQb7lsss8WIAgugAAAAAAAAAAMwl6vfPvpT8B/jm/hYI6v0x4bTx++fG9AAAAAAAAAADAiY0+7fLqPipNm705WsO+Zy6tPWy2h70AAAAAAAAAAM0MDzvAUZ4/7k/pPAc8Jb8ghGo8z/SYvAAAAAAAAAAA0HhVvnTZJb3WHDE9UC6VvL3xTz6JBDa+AACAPwAAgD9NYDe+W6yDvAvt2Ls+Oju6CIHfPbWKFjsAAIA/AACAP1qe2r1ca1i6mm/cO6MEKDOQ0WG6i5wqMwAAgD8AAAAA81GxPewJhrnJHEW5VtSPNXKZazpS5Gg4AACAPwAAgD+TvEE+YoaiPvilsr2WZ4a+fhtSPa4oRbwAAAAAAAAAAG7Shr5u8ci8F9sbPYoSPLumOi0+BIunOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXrBpzkobECUhpRSlIwBbJRNDgGMAXSUR0CoHE7MPjGUdX2UKGgGaAloD0MIXtkFg2skZECUhpRSlGgVTegDaBZHQKgd4+36Q/51fZQoaAZoCWgPQwihnj4C/4ZxQJSGlFKUaBVL/GgWR0CoHk2QOnVHdX2UKGgGaAloD0MI58jKLwMPcECUhpRSlGgVS+BoFkdAqB7JkNFz+3V9lChoBmgJaA9DCJlnJa345ENAlIaUUpRoFUvhaBZHQKgfNw1ivxJ1fZQoaAZoCWgPQwhVFK+ytllXQJSGlFKUaBVN6ANoFkdAqB+J9d/rjnV9lChoBmgJaA9DCNhEZi5w+T5AlIaUUpRoFUvAaBZHQKgfpwkPczt1fZQoaAZoCWgPQwj+1k6UhNhrQJSGlFKUaBVNBQFoFkdAqB+nQKKHf3V9lChoBmgJaA9DCMn/5O9erWxAlIaUUpRoFUv7aBZHQKggmq8UVSJ1fZQoaAZoCWgPQwjVPEfkexdwQJSGlFKUaBVL7GgWR0CoILaYVqN7dX2UKGgGaAloD0MIeEZblUTUWUCUhpRSlGgVTegDaBZHQKhQbz90ihZ1fZQoaAZoCWgPQwj2lQfpqZJwQJSGlFKUaBVL4WgWR0CoUHn2ys0YdX2UKGgGaAloD0MIPZrqyfw/WECUhpRSlGgVTegDaBZHQKhQw0dilSF1fZQoaAZoCWgPQwhHAg02dSY6wJSGlFKUaBVLx2gWR0CoUTtUfgaWdX2UKGgGaAloD0MIFjPC2wMTYECUhpRSlGgVTegDaBZHQKhRm/Y8Md91fZQoaAZoCWgPQwivCtRicAFuQJSGlFKUaBVNEQFoFkdAqFG6mwaBJHV9lChoBmgJaA9DCHQoQ1VMk3FAlIaUUpRoFUv6aBZHQKhRw3EQ5FR1fZQoaAZoCWgPQwht5LopZRduQJSGlFKUaBVL3GgWR0CoUgAvDgqFdX2UKGgGaAloD0MIouvCDw5EcUCUhpRSlGgVTSoBaBZHQKhTXJeVs1t1fZQoaAZoCWgPQwhNTYI3JMxwQJSGlFKUaBVNGAFoFkdAqFQAxpL26HV9lChoBmgJaA9DCCcyc4HLb0pAlIaUUpRoFUubaBZHQKhUYogFHJ91fZQoaAZoCWgPQwgmpguxep5wQJSGlFKUaBVL42gWR0CoVNRnOB1+dX2UKGgGaAloD0MIevtz0RAab0CUhpRSlGgVTQwBaBZHQKhVTrPdEb51fZQoaAZoCWgPQwgNG2X9ZgJOQJSGlFKUaBVLxWgWR0CoVVLpiZv2dX2UKGgGaAloD0MIaoR+pl52bkCUhpRSlGgVS/1oFkdAqFXXj0cwQHV9lChoBmgJaA9DCFRTknU4eWxAlIaUUpRoFUvgaBZHQKhWGzFdcB51fZQoaAZoCWgPQwhYkdEBSTBZQJSGlFKUaBVN6ANoFkdAqFZVNpM6BHV9lChoBmgJaA9DCBUA4xk0S25AlIaUUpRoFU2ZAWgWR0CoV911GLDRdX2UKGgGaAloD0MIJCao4duHYECUhpRSlGgVTegDaBZHQKhX8n1Fpfx1fZQoaAZoCWgPQwiZoIZvYf5uQJSGlFKUaBVL4GgWR0CoWCYjKPn0dX2UKGgGaAloD0MI9+rjoe86cECUhpRSlGgVTQgBaBZHQKhYO2b5M111fZQoaAZoCWgPQwh2Ul+W9odsQJSGlFKUaBVL7mgWR0CoWR5gPVd5dX2UKGgGaAloD0MISmBzDp49WkCUhpRSlGgVTegDaBZHQKhZURLbpNd1fZQoaAZoCWgPQwj752nAIINCQJSGlFKUaBVL5mgWR0CoWW2OyVv/dX2UKGgGaAloD0MI8X7cfnnXckCUhpRSlGgVS/FoFkdAqFp8/D+BH3V9lChoBmgJaA9DCAMGSZ9WrHFAlIaUUpRoFU0MAWgWR0CoWoJtSAH3dX2UKGgGaAloD0MIdqp8z0i7XECUhpRSlGgVTegDaBZHQKhbWtFKCg91fZQoaAZoCWgPQwhPBHEezvltQJSGlFKUaBVL3mgWR0CoW7Zi3G4rdX2UKGgGaAloD0MIdHlzuNbYb0CUhpRSlGgVS91oFkdAqFvpv73wkXV9lChoBmgJaA9DCEcBomDGwWtAlIaUUpRoFUviaBZHQKhdFglWwNd1fZQoaAZoCWgPQwjsvmN4rKlxQJSGlFKUaBVL3WgWR0CoXVUypJf6dX2UKGgGaAloD0MIeqnYmNenb0CUhpRSlGgVS/NoFkdAqF2hT2nKn3V9lChoBmgJaA9DCJGadjHNJC9AlIaUUpRoFUvNaBZHQKheSY6XBxh1fZQoaAZoCWgPQwiLVBhbyFpxQJSGlFKUaBVL4WgWR0CoXqpFspG4dX2UKGgGaAloD0MIVpkprT9OckCUhpRSlGgVS9loFkdAqF991EE1VHV9lChoBmgJaA9DCH5zf/U4uWNAlIaUUpRoFU3oA2gWR0CoYBwbVBlddX2UKGgGaAloD0MIRga5i7BLcECUhpRSlGgVS+doFkdAqGAwI4VARnV9lChoBmgJaA9DCDSdnQyONnFAlIaUUpRoFUvLaBZHQKhhSIgNgBt1fZQoaAZoCWgPQwgIrvIEQgdiQJSGlFKUaBVN6ANoFkdAqGGSvmoze3V9lChoBmgJaA9DCN1FmKLcDnBAlIaUUpRoFUvlaBZHQKhjcDYAbQ11fZQoaAZoCWgPQwiYTYBhubJwQJSGlFKUaBVL4mgWR0CoZE7L2YfGdX2UKGgGaAloD0MIZAW/DTHRX0CUhpRSlGgVTegDaBZHQKhkoU21lXl1fZQoaAZoCWgPQwjlmCzu/ztwQJSGlFKUaBVL3mgWR0CoZOSJsO5KdX2UKGgGaAloD0MIZXH/kemsNUCUhpRSlGgVS7RoFkdAqGVkG/vfCXV9lChoBmgJaA9DCMvydRn+um1AlIaUUpRoFUvhaBZHQKhmDgXMyJt1fZQoaAZoCWgPQwjdCIuKuCdsQJSGlFKUaBVNWAFoFkdAqGe9gpjMFHV9lChoBmgJaA9DCIeGxahr3V9AlIaUUpRoFU3oA2gWR0CoZ/2d3B55dX2UKGgGaAloD0MIQpjbvdy6X0CUhpRSlGgVTegDaBZHQKhpLKJ2t+11fZQoaAZoCWgPQwjpnJ/i+KlxQJSGlFKUaBVL/mgWR0CoaT23Sa3JdX2UKGgGaAloD0MIJEc6AyODMkCUhpRSlGgVS9toFkdAqGlS9K28ZnV9lChoBmgJaA9DCJ1jQPZ642BAlIaUUpRoFU3oA2gWR0CoagdH2AXmdX2UKGgGaAloD0MI4IYYr3mjcECUhpRSlGgVS/5oFkdAqGpKZYxL03V9lChoBmgJaA9DCDklICYhFHFAlIaUUpRoFU0MAWgWR0Coas35eqrBdX2UKGgGaAloD0MIyogLQKMNcUCUhpRSlGgVS/9oFkdAqGr/wsoUjHV9lChoBmgJaA9DCDTVk/nHZXBAlIaUUpRoFUvzaBZHQKhrUrnTy8V1fZQoaAZoCWgPQwgpmDEFa45iQJSGlFKUaBVN6ANoFkdAqGvVeyAxz3V9lChoBmgJaA9DCL37473qCmBAlIaUUpRoFU3oA2gWR0CobDDuKGcndX2UKGgGaAloD0MIGH0FaYbtcUCUhpRSlGgVS99oFkdAqGxrQswta3V9lChoBmgJaA9DCMtKk1JQwXBAlIaUUpRoFU0EAWgWR0CobNr/CIk7dX2UKGgGaAloD0MI2EXRA5/acUCUhpRSlGgVTQABaBZHQKht1JEpiJB1fZQoaAZoCWgPQwiVfsLZLR5vQJSGlFKUaBVL1mgWR0CobgZbhWHUdX2UKGgGaAloD0MIL4UHza7DcECUhpRSlGgVS+toFkdAqG4nNC7btnV9lChoBmgJaA9DCMuBHmobYnBAlIaUUpRoFU0hAWgWR0CobnrqMWGidX2UKGgGaAloD0MIOKRRgVNJcUCUhpRSlGgVTS0BaBZHQKhukS5AhSt1fZQoaAZoCWgPQwgPJsXHJ2NvQJSGlFKUaBVL6WgWR0CobtBHskY5dX2UKGgGaAloD0MI4c6Fkd5QcECUhpRSlGgVS/BoFkdAqG8bVJ+UhXV9lChoBmgJaA9DCLLZkeq7Jm9AlIaUUpRoFUvKaBZHQKhvQIuXeFd1fZQoaAZoCWgPQwiHp1fK8qBwQJSGlFKUaBVL6mgWR0Cob05ZB9kSdX2UKGgGaAloD0MInBa86CtsYkCUhpRSlGgVTegDaBZHQKhvz2nKnvV1fZQoaAZoCWgPQwhOuFfm7VRwQJSGlFKUaBVL3WgWR0Cob+LXtjTbdX2UKGgGaAloD0MI0o+GU6aAcECUhpRSlGgVS7doFkdAqG/ri0fHP3V9lChoBmgJaA9DCFRuopYmJXFAlIaUUpRoFUveaBZHQKhwGGSIP9V1fZQoaAZoCWgPQwhA9+XMdipiQJSGlFKUaBVN6ANoFkdAqHDrPyCnP3V9lChoBmgJaA9DCHbj3ZExrmNAlIaUUpRoFU3oA2gWR0CocSQ8OkLydX2UKGgGaAloD0MIRnpRu99nYkCUhpRSlGgVTegDaBZHQKhxobayrxR1fZQoaAZoCWgPQwiSBre1hY9IQJSGlFKUaBVLx2gWR0CocdV3dKukdX2UKGgGaAloD0MIqRPQRNjhcECUhpRSlGgVS/BoFkdAqHHh5ooNNXV9lChoBmgJaA9DCAwHQrKAEnFAlIaUUpRoFU0EAWgWR0CocegjY7JXdX2UKGgGaAloD0MIyQImcCtPcECUhpRSlGgVS+JoFkdAqHIEu6ErXnV9lChoBmgJaA9DCGzQl94+ynBAlIaUUpRoFUvHaBZHQKhyLE6T4cp1fZQoaAZoCWgPQwhD5sqg2tdvQJSGlFKUaBVNJgFoFkdAqHJ4Oz6acHV9lChoBmgJaA9DCAEYz6ChNW5AlIaUUpRoFUvXaBZHQKhy7fZVXFN1fZQoaAZoCWgPQwg3xk54CQBxQJSGlFKUaBVL5GgWR0CocxN2cJ+ldX2UKGgGaAloD0MIRyBe1y/HcUCUhpRSlGgVTQEBaBZHQKhzZ1EmY0F1fZQoaAZoCWgPQwg+sU6Vr/pxQJSGlFKUaBVL0WgWR0Coc8qUeMhpdX2UKGgGaAloD0MIhpM0f8xBb0CUhpRSlGgVTQ8BaBZHQKhz4ZXuE251fZQoaAZoCWgPQwhUxyqlJ2FwQJSGlFKUaBVNZAFoFkdAqHQutU4rBnV9lChoBmgJaA9DCF97ZkkAT3BAlIaUUpRoFU0VAWgWR0CodQzHjp9rdX2UKGgGaAloD0MI+tUcIBh1cUCUhpRSlGgVS+xoFkdAqHUlgjQiRnV9lChoBmgJaA9DCIJwBRSq23BAlIaUUpRoFUvoaBZHQKh1S7GvOhV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-lunarlander-v2-baseline/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ab91004f64cb9bea0938a3faa42bd51766112ce1c0b4185737a6bfdf2e01f2
3
+ size 87929
ppo-lunarlander-v2-baseline/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d72abb5a8e02255eff48ec747c30b54022fd6c6fa2261d444a81225c7cf25ac
3
+ size 43201
ppo-lunarlander-v2-baseline/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunarlander-v2-baseline/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 236.40451275953333, "std_reward": 48.110314181067324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T15:06:56.714185"}