Text-to-Speech
Transformers
Safetensors
English
parler_tts
text2text-generation
annotation
File size: 21,895 Bytes
09e401a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import json
import logging
import os
import re
import shutil
import sys
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from accelerate import Accelerator, skip_first_batches
from accelerate.logging import get_logger
from datasets import DatasetDict, load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
)


logger = get_logger(__name__, log_level="INFO")


@dataclass
class ModelArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    model_name_or_path: str = field(
        metadata={"help": "The name of the model to use (via the transformers library) for the prompt annotation."},
    )
    per_device_eval_batch_size: int = field(
        metadata={"help": "The per-device batch size to use for inference."},
    )
    model_variant: str = field(
        default=None,
        metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. "},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    torch_dtype: Optional[str] = field(
        default="float16",
        metadata={
            "help": (
                "Floating-point format in which the model weights should be initialized"
                " and the computations run. Choose one of `[float32, float16, bfloat16]`."
            )
        },
    )
    attn_implementation: Optional[str] = field(
        default="sdpa",
        metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"},
    )
    load_in_8bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 8-bit precision for inference."}
    )
    load_in_4bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 4-bit precision for inference."}
    )
    bnb_4bit_quant_type: Optional[str] = field(
        default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
    )
    use_bnb_nested_quant: Optional[bool] = field(default=False, metadata={"help": "use nested quantization"})
    trust_remote_code: Optional[bool] = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    use_fast_tokenizer: Optional[bool] = field(
        default=True, metadata={"help": "Use fast tokenizer for encoding/decoding input ids"}
    )
    token: Optional[bool] = field(
        default=True,
        metadata={
            "help": "Whether or not to use an authentication token when loading/uploading from the Hugging Face Hub"
        },
    )
    do_sample: Optional[bool] = field(default=True, metadata={"help": "Whether to use sampling mode for generation"})
    temperature: Optional[float] = field(default=0.6, metadata={"help": "Temperature for sampling-based generation"})
    max_new_tokens: Optional[int] = field(
        default=256, metadata={"help": "Maximum number of new tokens during generation"}
    )
    torch_compile: Optional[bool] = field(
        default=False,
        metadata={
            "help": "Whether to compile the forward pass (not sampling) in generate. Only compatible with Gemma and LlaMA."
        },
    )


@dataclass
class DataArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    output_dir: str = field(
        metadata={
            "help": "Where to save the processed dataset to disk. If unspecified, uses a 'pretty' version of the "
            "original dataset name. E.g. 'facebook/voxpopuli' will be saved under 'voxpopuli'."
        },
    )
    dataset_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset to use (via the datasets library)"},
    )
    dataset_config_name: Optional[str] = field(
        default=None,
        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
    )
    dataset_split_name: Optional[str] = field(
        default=None,
        metadata={"help": "The split name of the dataset to use (via the datasets library)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={"help": "Maximum number of samples for generation - use for debugging purposes."},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    dataloader_num_workers: Optional[int] = field(
        default=0,
        metadata={"help": "The number of processes to use for the dataloader."},
    )
    push_to_hub: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to push the processed dataset to the Hub."},
    )
    hub_dataset_id: Optional[str] = field(
        default=None,
        metadata={"help": "Repository namespace if pushing to the Hugging Face Hub."},
    )
    overwrite_output_dir: Optional[bool] = field(
        default=False,
        metadata={"help": "Overwrite the content of the output directory each time the script is run."},
    )
    save_steps: Optional[int] = field(
        default=500,
        metadata={"help": "Save the generated prompts every save_steps."},
    )
    save_total_limit: Optional[int] = field(
        default=1, metadata={"help": ("If a value is passed, will limit the total number of saved checkpoints")}
    )

    def __post_init__(self):
        if self.push_to_hub and self.hub_dataset_id is None:
            raise ValueError("You must specify the `hub_dataset_id` when setting `--push_to_hub=True`")


def get_quantization_config(model_args: ModelArguments) -> Union[BitsAndBytesConfig, None]:
    if model_args.load_in_4bit:
        compute_dtype = torch.float16
        if model_args.torch_dtype not in {"auto", None}:
            compute_dtype = getattr(torch, model_args.torch_dtype)

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
            bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
        )
    elif model_args.load_in_8bit:
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
        )
    else:
        quantization_config = None

    return quantization_config


def get_current_device() -> int:
    """Get the current device. For GPU we return the local process index to enable multiple GPU training."""
    return Accelerator().local_process_index if torch.cuda.is_available() else "cpu"


def get_kbit_device_map() -> Union[Dict[str, int], None]:
    """Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`"""
    return {"": get_current_device()} if torch.cuda.is_available() else None


CHECKPOINT_PREFIX = "checkpoint"
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+).json$")


def save_checkpoint(output_dir, all_generated_ids, step):
    checkpoint_path = f"{CHECKPOINT_PREFIX}-{step}.json"
    output_path = os.path.join(output_dir, checkpoint_path)
    all_generated_ids = [ids.tolist() for ids in all_generated_ids]
    with open(output_path, "w") as file:
        json.dump(all_generated_ids, file)


def load_checkpoint(checkpoint_path):
    with open(checkpoint_path, "r") as file:
        all_generated_ids = json.load(file)
    all_generated_ids = [np.array(lst) for lst in all_generated_ids]
    return all_generated_ids


def sorted_checkpoints(output_dir=None) -> List[str]:
    """Helper function to sort saved checkpoints from oldest to newest."""
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{CHECKPOINT_PREFIX}-*")]

    for path in glob_checkpoints:
        regex_match = re.match(f".*{CHECKPOINT_PREFIX}-([0-9]+)", path)
        if regex_match is not None and regex_match.groups() is not None:
            ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted


def rotate_checkpoints(save_total_limit=None, output_dir=None) -> None:
    """Helper function to delete old checkpoints."""
    if save_total_limit is None or save_total_limit <= 0:
        return
    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(output_dir=output_dir)
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        os.remove(checkpoint)


def get_last_checkpoint(folder) -> Tuple[List, int]:
    if not os.path.exists(folder) or not os.path.isdir(folder):
        os.makedirs(folder, exist_ok=True)
        return [], 0
    content = os.listdir(folder)
    checkpoints = [path for path in content if _RE_CHECKPOINT.search(path) is not None]
    if len(checkpoints) == 0:
        return [], 0
    last_checkpoint = os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
    # Find num steps saved state string pattern
    pattern = r"checkpoint-(\d+).json"
    match = re.search(pattern, last_checkpoint)
    cur_step = int(match.group(1))
    # load corresponding generated ids
    all_generated_ids = load_checkpoint(last_checkpoint)
    return all_generated_ids, cur_step


@dataclass
class DataCollatorWithPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
    """

    tokenizer: Any

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        input_ids = {"input_ids": [feature["input_ids"] for feature in features]}
        batch = self.tokenizer.pad(input_ids, return_tensors="pt", padding="longest", return_attention_mask=True)
        return batch

id_to_name = {
    "ex01": "Jerry",
    "ex02": "Elisabeth",
    "ex03": "Thomas",
    "ex04": "Talia"
}

PROMPT = """You will be given a name and an enunciation style related to an audio sample of someone speaking.
1. The name will be one of: Jerry, Elisabeth, Thomas, Talia.
2. The enunciation style will be one of: 'enunciated', 'happy', 'confused', 'default' (meaning no particular emotion conveyed), 'laughing', 'sad', 'whisper', 'emphasis'.
3. The pace of the speaker's delivery (e.g., very slowly, quite slowly, slightly slowly, moderate speed, slightly fast, quite fast, very fast)

Your task is to create a simple text description using these keywords that accurately describes the audio sample. Ensure that the generated description is grammatically correct, easy to understand, and most importantly, concise.

For example, given the following keywords: 'Talia', 'happy', 'quite slowly', a valid description would be: 'Talia speaks happily and quite slowly with high quality.'. Another valid description would be: 'Talia delivers her words happily and quite slowly with high quality audio.'. Another example, given the following keywords: 'Jerry', 'emphasis', 'slightly slowly': 'Jerry speaks with emphasis on certain words and slightly slowly with high quality audio.'

Each description is appended with 'with high quality'.

You are free to change the order of the information, and replace synonymous terms. Give one description and nothing else. No alternatives or repeating the task. Remember to prioritise conciseness and simplicity.

For the information: '[speaker_id]', '[style]', '[speaking_rate]' the corresponding description is:"""


def main():
    # 1. Parse input arguments
    parser = HfArgumentParser((ModelArguments, DataArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args = parser.parse_args_into_dataclasses()

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    
    accelerator = Accelerator()

    if data_args.overwrite_output_dir and os.path.exists(data_args.output_dir) and os.path.isdir(data_args.output_dir):
        logger.info("Cleaning output dir from previous run...")
        shutil.rmtree(data_args.output_dir)

    # 3. Load annotated dataset
    logger.info("*** Load annotated dataset ***")
    if data_args.dataset_split_name is not None:
        raw_datasets = DatasetDict()
        data_splits = data_args.dataset_split_name.split("+")
        # load on a split-wise basis
        for split in data_splits:
            with accelerator.local_main_process_first():
                raw_datasets[split] = load_dataset(
                    data_args.dataset_name,
                    data_args.dataset_config_name,
                    split=split,
                    cache_dir=model_args.cache_dir,
                    token=model_args.token,
                    num_proc=data_args.preprocessing_num_workers,
                )
    else:
        with accelerator.local_main_process_first():
            # load all splits for annotation
            raw_datasets = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                cache_dir=model_args.cache_dir,
                token=model_args.token,
                num_proc=data_args.preprocessing_num_workers,
            )

    raw_datasets_features = set(raw_datasets[next(iter(raw_datasets))].features.keys())

    if data_args.max_eval_samples is not None:
        for split in raw_datasets:
            raw_datasets[split] = raw_datasets[split].select(range(data_args.max_eval_samples))

    # TODO(SG): add accent
    EXPECTED_COLUMNS = {"speaker_id", "style", "speaking_rate"}
    if not EXPECTED_COLUMNS.issubset(raw_datasets_features):
        missing_columns = EXPECTED_COLUMNS - raw_datasets_features
        raise ValueError(
            f"Missing columns {missing_columns} from the dataset features. Got dataset features {raw_datasets_features}"
        )

    # 4. Load pre-trained model
    logger.info("*** Load pretrained model ***")
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)

    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        variant=model_args.model_variant,
        trust_remote_code=model_args.trust_remote_code,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        low_cpu_mem_usage=True,
        token=model_args.token,
    ).eval()

    if model_args.torch_compile:
        # torch compile only compatible with gemma and llama
        if not callable(getattr(model, "_setup_cache", None)):
            raise ValueError(
                f"Static k/v cache is not compatible with the model {model.__class__.__name__}. Set `--torch_compile=False"
                "for dynamic k/v cache"
            )
        model.generation_config.cache_implementation = "static"
        # compile the forward pass (but not the top-{p,k} sampling)
        model = torch.compile(model, mode="reduce-overhead", fullgraph=True)

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        trust_remote_code=model_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
        padding_side="left",
    )
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.bos_token_id
        model.generation_config.pad_token_id = model.generation_config.eos_token_id


    def prepare_dataset(sample):
        sample_prompt = PROMPT
        sample["speaker_id"] = id_to_name[sample["speaker_id"]]
        for key in EXPECTED_COLUMNS:
            sample_prompt = sample_prompt.replace(f"[{key}]", sample[key])
        sample_prompt = [{"role": "user", "content": sample_prompt}]
        token_ids = tokenizer.apply_chat_template(sample_prompt)
        sample["input_ids"] = token_ids
        return sample

    with accelerator.local_main_process_first():
        vectorized_datasets = raw_datasets.map(
            prepare_dataset, num_proc=data_args.preprocessing_num_workers, desc="Preparing prompts"
        )

    # Prepare everything with our `accelerator`
    model = accelerator.prepare(model)
    data_collator = DataCollatorWithPadding(tokenizer)

    def generate_step(batch):
        output_ids = accelerator.unwrap_model(model).generate(
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
            do_sample=model_args.do_sample,
            temperature=model_args.temperature,
            max_new_tokens=model_args.max_new_tokens,
        )
        output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
        return output_ids

    def postprocess_dataset(sample):
        prompt_text = tokenizer.decode(sample["input_ids"], skip_special_tokens=True)
        generated_text = tokenizer.decode(sample["generated_ids"], skip_special_tokens=True)
        sample["text_description"] = generated_text[len(prompt_text) :]
        return sample

    for split in vectorized_datasets:
        data_loader = DataLoader(
            vectorized_datasets[split],
            batch_size=model_args.per_device_eval_batch_size,
            collate_fn=data_collator,
            num_workers=data_args.dataloader_num_workers,
            pin_memory=True,
        )
        data_loader = accelerator.prepare(data_loader)
        total_inference_steps = len(data_loader)
        progress_bar = tqdm(
            range(total_inference_steps), desc=" ... ", position=0, disable=not accelerator.is_local_main_process
        )

        split_output_dir = os.path.join(data_args.output_dir, split)
        all_generated_ids, cur_step = get_last_checkpoint(split_output_dir)

        if cur_step > 0:
            logger.info(f"Resuming {split} from step {cur_step}")
            # efficiently skip the first n batches
            data_loader = skip_first_batches(data_loader, cur_step)
            progress_bar.update(cur_step)

        while cur_step < total_inference_steps:
            for batch in data_loader:
                generated_ids = generate_step(batch)
                generated_ids = accelerator.gather_for_metrics(generated_ids)
                all_generated_ids.extend(generated_ids.cpu().numpy())

                cur_step += 1
                progress_bar.update(1)

                if (cur_step % data_args.save_steps == 0) or (cur_step == total_inference_steps):
                    save_checkpoint(split_output_dir, all_generated_ids, cur_step)
                    rotate_checkpoints(data_args.save_total_limit, output_dir=split_output_dir)

        vectorized_datasets[split] = vectorized_datasets[split].add_column("generated_ids", all_generated_ids)

        if accelerator.is_main_process:
            vectorized_datasets[split] = vectorized_datasets[split].map(
                postprocess_dataset,
                num_proc=data_args.preprocessing_num_workers,
                desc="Postprocessing dataset",
                remove_columns=["input_ids", "generated_ids"],
            )
        accelerator.wait_for_everyone()

    if accelerator.is_main_process:
        vectorized_datasets.save_to_disk(data_args.output_dir)
        if data_args.push_to_hub:
            vectorized_datasets.push_to_hub(
                data_args.hub_dataset_id,
                config_name=data_args.dataset_config_name if data_args.dataset_config_name is not None else "default",
                token=model_args.token,
            )
    accelerator.wait_for_everyone()
    accelerator.end_training()


if __name__ == "__main__":
    main()