File size: 6,230 Bytes
0b23108
036c406
 
 
 
 
 
0b23108
036c406
 
 
 
 
 
0b23108
 
036c406
0b23108
 
fe24809
0b23108
 
 
 
036c406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b23108
 
 
036c406
0b23108
036c406
0b23108
036c406
 
 
 
 
 
 
989d46f
036c406
 
 
 
 
 
 
 
 
 
 
 
 
 
0b23108
 
 
036c406
0b23108
036c406
0b23108
036c406
0b23108
036c406
0b23108
036c406
0b23108
036c406
 
 
 
 
 
 
 
0b23108
 
 
 
 
036c406
 
 
 
 
 
574126c
036c406
 
 
 
 
 
 
574126c
036c406
574126c
 
036c406
574126c
 
 
036c406
 
 
574126c
 
 
036c406
 
 
 
 
 
 
 
 
 
ccf2479
036c406
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: cc-by-sa-4.0
language:
- de
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- partypress
- political science
- parties
- press releases
widget:
 - text: 'Immissionsschutzgesetz muss ein Klagerecht für BürgerInnen beinhalten: "Es ist seit Jahren bekannt, welche Maßnahmen zur Reduktion der Feinstaubbelastung gesetzt werden müssen. Diese neuerlich bloß aufzuzählen, wie es jetzt Minister Berlakovich tut, hilft den Betroffenen nicht", kritisiert die Grüne Umweltsprecherin Christiane Brunner die jüngsten Aussagen des Umweltministers zur Problematik Feinstaub.'
---

# PARTYPRESS monolingual Austria


Fine-tuned model, based on [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased). Used in [Erfort et al. (2023)](https://doi.org/10.1177/20531680231183512), building on the PARTYPRESS database. For the downstream task of classyfing press releases from political parties into 23 unique policy areas we achieve a performance comparable to expert human coders.


## Model description

The PARTYPRESS monolingual model builds on [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) but has a supervised component. This means, it was fine-tuned using texts labeled by humans. The labels indicate 23 different political issue categories derived from the Comparative Agendas Project (CAP):
| Code | Issue |
|--|-------|
| 1 | Macroeconomics |
| 2 | Civil Rights |
| 3 | Health |
| 4 | Agriculture |
| 5 | Labor |
| 6 | Education |
| 7 | Environment |
| 8 | Energy |
| 9 | Immigration |
| 10 | Transportation |
| 12 | Law and Crime |
| 13 | Social Welfare |
| 14 | Housing |
| 15 | Domestic Commerce |
| 16 | Defense |
| 17 | Technology |
| 18 | Foreign Trade |
| 19.1 | International Affairs |
| 19.2 | European Union |
| 20 | Government Operations |
| 23 | Culture |
| 98 | Non-thematic |
| 99 | Other |

## Model variations

There are several monolingual models for different countries, and a multilingual model. The multilingual model can be easily extended to other languages, country contexts, or time periods by fine-tuning it with minimal additional labeled texts.

## Intended uses & limitations

The main use of the model is for text classification of press releases from political parties. It may also be useful for other political texts.

The classification can then be used to measure which issues parties are discussing in their communication.

### How to use

This model can be used directly with a pipeline for text classification:

```python
>>> from transformers import pipeline
>>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
>>> partypress = pipeline("text-classification", model = "cornelius/partypress-monolingual-austria", tokenizer = "cornelius/partypress-monolingual-austria", **tokenizer_kwargs)
>>> partypress("Your text here.")
```

### Limitations and bias

The model was trained with data from parties in Austria. For use in other countries, the model may be further fine-tuned. Without further fine-tuning, the performance of the model may be lower.

The model may have biased predictions. We discuss some biases by country, party, and over time in the release paper for the PARTYPRESS database. For example, the performance is highest for press releases from Ireland (75%) and lowest for Poland (55%).

## Training data

The PARTYPRESS multilingual model was fine-tuned with about 3,000 press releases from parties in Austria. The press releases were labeled by two expert human coders.

For the training data of the underlying model, please refer to [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased)

## Training procedure

### Preprocessing

For the preprocessing, please refer to [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased)

### Pretraining

For the pretraining, please refer to [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased)

### Fine-tuning

We fine-tuned the model using about 3,000 labeled press releases from political parties in Austria. 

#### Training Hyperparameters

The batch size for training was 12, for testing 2, with four epochs. All other hyperparameters were the standard from the transformers library.


#### Framework versions

- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3


## Evaluation results

Fine-tuned on our downstream task, this model achieves the following results in a five-fold cross validation that are comparable to the performance of our expert human coders. Please refer to Erfort et al. (2023)


### BibTeX entry and citation info

```bibtex
@article{erfort_partypress_2023,
  author    = {Cornelius Erfort and
               Lukas F. Stoetzer and
               Heike Klüver},
  title     = {The PARTYPRESS Database: A new comparative database of parties’ press releases},
  journal   = {Research and Politics},
  volume    = {10},
  number    = {3},
  year      = {2023},
  doi       = {10.1177/20531680231183512},
  URL       = {https://doi.org/10.1177/20531680231183512}

}
```

Erfort, C., Stoetzer, L. F., & Klüver, H. (2023). The PARTYPRESS Database: A new comparative database of parties’ press releases. Research & Politics, 10(3). [https://doi.org/10.1177/20531680231183512](https://doi.org/10.1177/20531680231183512)


### Further resources

Github: [cornelius-erfort/partypress](https://github.com/cornelius-erfort/partypress)

Research and Politics Dataverse: [Replication Data for: The PARTYPRESS Database: A New Comparative Database of Parties’ Press Releases](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FOINX7Q)



## Acknowledgements

Research for this contribution is part of the Cluster of Excellence "Contestations of the Liberal Script" (EXC 2055, Project-ID: 390715649), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy. Cornelius Erfort is moreover grateful for generous funding provided by the DFG through the Research Training Group DYNAMICS (GRK 2458/1).

## Contact

Cornelius Erfort

Humboldt-Universität zu Berlin

[corneliuserfort.de](corneliuserfort.de)