File size: 2,477 Bytes
0c6b5e0 79c61fa 52512e0 79c61fa 7b56a52 79c61fa ae4ccdb 79c61fa 90c2def 79c61fa dfdf00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-4.0
datasets:
- patomp/thai-mscoco-2014-captions
metrics:
- recall
---
## Requirements
```bash
pip install pythainlp
pip install gensim>=4.3.1
pip install git+https://github.com/openai/CLIP.git
```
## Usage
Encode a text by
```python
from transformers import AutoModel
text = 'หมากำลังวิ่งในสนามหญ้า'
model = AutoModel.from_pretrained("patomp/thai-light-multimodal-clip-and-distill", trust_remote_code=True)
embeddings = model(text)
print("Text features shape:", embeddings.shape)
```
Encode an image by
```python
import torch
import clip
import requests
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
print("Image features shape:", image_features.shape)
```
## Benchmark
On the test set of [Thai MS COCO 2014 dataset](https://huggingface.co/datasets/patomp/thai-mscoco-2014-captions)
| Model \ Metrics | text-find-image recall@1 | text-find-image recall@10 | image-find-text recall@1 | image-find-text recall@10 | # text samples per second* |
| :--- | --- | --- | --- | --- | --- |
| **Multilingual Encoder** | | | | | |
| [clip-ViT-B-32-multilingual-v1](https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1) | 0.075 | 0.242 | 0.096 | 0.286 | 251 |
| [XLM-Roberta-Large-Vit-B-32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32) | **0.226** | **0.565** | **0.265** | **0.596** | 20 |
| **Thai Encoder (WangchanBERTa-based)** | | | | | |
| [Thai-Cross-CLIP](https://github.com/vikimark/Thai-Cross-CLIP) | 0.167 | 0.475 | 0.197 | 0.523 | 48 |
| **Thai Encoder (Thai2Fit-based)** | | | | | |
| [thai-light-multimodal-clip-and-distill](https://huggingface.co/patomp/thai-light-multimodal-clip-and-distill) | 0.082 | **0.328** | 0.118 |**0.401**| 450 |
| [thai-light-multimodal-distill](https://huggingface.co/patomp/thai-light-multimodal-distill) | **0.084** | 0.319 | **0.122** |**0.401**| 450 |
## Reference
Some part of this content referenced from https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32.
For more detail, please visit https://github.com/calzonelover/Lightweight-Multi-modal-Encoder-for-Thai. |