## Requirements ```bash pip install pythainlp pip install gensim>=4.3.1 pip install git+https://github.com/openai/CLIP.git ``` ## Usage Encode a text by ```python from transformers import AutoModel text = 'หมากำลังวิ่งในสนามหญ้า' model = AutoModel.from_pretrained("patomp/thai-light-multimodal-clip-and-distill", trust_remote_code=True) embeddings = model(text) print("Text features shape:", embeddings.shape) ``` Encode an image by ```python import torch import clip import requests from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) print("Image features shape:", image_features.shape) ``` ## Benchmark On the test set of [Thai MS COCO 2014 dataset](https://huggingface.co/datasets/patomp/thai-mscoco-2014-captions) | Model \ Metrics | text-find-image recall@1 | text-find-image recall@10 | image-find-text recall@1 | image-find-text recall@10 | # text samples per second* | | :--- | --- | --- | --- | --- | --- | | **Multilingual Encoder** | | | | | | | [clip-ViT-B-32-multilingual-v1](https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1) | 0.075 | 0.242 | 0.096 | 0.286 | - | | [XLM-Roberta-Large-Vit-B-32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32) | **0.226** | **0.565** | **0.265** | **0.596** | 20 | | **Thai Encoder (WangchanBERTa-based)** | | | | | | | [Thai-Cross-CLIP](https://github.com/vikimark/Thai-Cross-CLIP) | 0.167 | 0.475 | 0.197 | 0.523 | 48 | | **Thai Encoder (Thai2Fit-based)** | | | | | | | [thai-light-multimodal-clip-and-distill](https://huggingface.co/patomp/thai-light-multimodal-clip-and-distill) | 0.082 | **0.328** | 0.118 |**0.401**| 450 | | [thai-light-multimodal-distill](https://huggingface.co/patomp/thai-light-multimodal-distill) | **0.084** | 0.319 | **0.122** |**0.401**| 450 | ## Reference Some part of this content referenced from https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32. For more detail, please visit https://github.com/calzonelover/Lightweight-Multi-modal-Encoder-for-Thai.