patrickfleith commited on
Commit
54762f6
1 Parent(s): cd17af0

Push model using huggingface_hub.

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: patrickfleith/my-awesome-astro-text-classifier
3
  library_name: setfit
4
  metrics:
5
  - accuracy
@@ -9,13 +9,38 @@ tags:
9
  - sentence-transformers
10
  - text-classification
11
  - generated_from_setfit_trainer
12
- widget: []
 
 
 
 
 
 
 
 
 
 
 
13
  inference: true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
- # SetFit with patrickfleith/my-awesome-astro-text-classifier
17
 
18
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [patrickfleith/my-awesome-astro-text-classifier](https://huggingface.co/patrickfleith/my-awesome-astro-text-classifier) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
 
20
  The model has been trained using an efficient few-shot learning technique that involves:
21
 
@@ -26,7 +51,7 @@ The model has been trained using an efficient few-shot learning technique that i
26
 
27
  ### Model Description
28
  - **Model Type:** SetFit
29
- - **Sentence Transformer body:** [patrickfleith/my-awesome-astro-text-classifier](https://huggingface.co/patrickfleith/my-awesome-astro-text-classifier)
30
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
  - **Maximum Sequence Length:** 512 tokens
32
  - **Number of Classes:** 3 classes
@@ -40,6 +65,20 @@ The model has been trained using an efficient few-shot learning technique that i
40
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ## Uses
44
 
45
  ### Direct Use for Inference
@@ -58,7 +97,7 @@ from setfit import SetFitModel
58
  # Download from the 🤗 Hub
59
  model = SetFitModel.from_pretrained("patrickfleith/my-awesome-astro-text-classifier")
60
  # Run inference
61
- preds = model("I loved the spiderman movie!")
62
  ```
63
 
64
  <!--
@@ -87,6 +126,45 @@ preds = model("I loved the spiderman movie!")
87
 
88
  ## Training Details
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ### Framework Versions
91
  - Python: 3.10.12
92
  - SetFit: 1.0.3
 
1
  ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
  library_name: setfit
4
  metrics:
5
  - accuracy
 
9
  - sentence-transformers
10
  - text-classification
11
  - generated_from_setfit_trainer
12
+ widget:
13
+ - text: How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide,
14
+ affect the performance and handling requirements of a rocket engine?
15
+ - text: Rocket engines designed for vacuum operation often incorporate radiative cooling
16
+ methods, utilizing large surface areas to dissipate heat in the absence of convective
17
+ cooling mechanisms.
18
+ - text: Thermo-optical properties of surface materials, such as absorptivity and emissivity,
19
+ are critical parameters in the design of the thermal control subsystem.
20
+ - text: The thrust produced by a rocket engine is a function of the mass flow rate
21
+ of the propellant and the velocity of the exhaust gases as they exit the nozzle.
22
+ - text: Thermal analysis of a satellite involves finite element modeling to predict
23
+ temperature gradients and ensure proper thermal design and component placement.
24
  inference: true
25
+ model-index:
26
+ - name: SetFit with BAAI/bge-small-en-v1.5
27
+ results:
28
+ - task:
29
+ type: text-classification
30
+ name: Text Classification
31
+ dataset:
32
+ name: Unknown
33
+ type: unknown
34
+ split: test
35
+ metrics:
36
+ - type: accuracy
37
+ value: 1.0
38
+ name: Accuracy
39
  ---
40
 
41
+ # SetFit with BAAI/bge-small-en-v1.5
42
 
43
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
44
 
45
  The model has been trained using an efficient few-shot learning technique that involves:
46
 
 
51
 
52
  ### Model Description
53
  - **Model Type:** SetFit
54
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
55
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
56
  - **Maximum Sequence Length:** 512 tokens
57
  - **Number of Classes:** 3 classes
 
65
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
 
68
+ ### Model Labels
69
+ | Label | Examples |
70
+ |:----------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
71
+ | Propulsion | <ul><li>"Rocket engines operate on the principle of Newton's Third Law of Motion, where the expulsion of high-speed exhaust gases produces a reaction force that propels the rocket forward."</li><li>'The combustion efficiency of a rocket engine depends on factors like propellant mixture ratio, injector design, and combustion chamber pressure.'</li><li>'Deep throttling capability, which allows a rocket engine to vary its thrust over a wide range, is essential for applications requiring precise landing maneuvers, such as lunar landers.'</li></ul> |
72
+ | Power Subsystem | <ul><li>'Redundant power paths and autonomous fault detection mechanisms are implemented to ensure continuous electrical supply even in the event of subsystem failures or external anomalies.'</li><li>'Electromagnetic interference (EMI) shielding and grounding techniques are essential in satellite design to prevent power system noise from affecting sensitive communication and navigation subsystems.'</li><li>'Autonomous diagnostic and recovery protocols are embedded within the power management system to isolate and rectify faults, ensuring mission continuity.'</li></ul> |
73
+ | Thermal Control | <ul><li>'The thermal control subsystem must accommodate both internal heat generated by electronic components and external thermal loads from the space environment.'</li><li>'Describe the impact of albedo and infrared emissions from Earth on satellite thermal design.'</li><li>'Passive thermal control elements, such as multi-layer insulation (MLI), surface coatings, and radiators, are used to minimize thermal fluctuations and radiation absorption.'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 1.0 |
81
+
82
  ## Uses
83
 
84
  ### Direct Use for Inference
 
97
  # Download from the 🤗 Hub
98
  model = SetFitModel.from_pretrained("patrickfleith/my-awesome-astro-text-classifier")
99
  # Run inference
100
+ preds = model("How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide, affect the performance and handling requirements of a rocket engine?")
101
  ```
102
 
103
  <!--
 
126
 
127
  ## Training Details
128
 
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:--------|:----|
132
+ | Word count | 11 | 22.2368 | 30 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:----------------|:----------------------|
136
+ | Propulsion | 15 |
137
+ | Thermal Control | 14 |
138
+ | Power Subsystem | 9 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (32, 32)
142
+ - num_epochs: (10, 10)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - body_learning_rate: (2e-05, 1e-05)
146
+ - head_learning_rate: 0.01
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:------:|:----:|:-------------:|:---------------:|
160
+ | 0.0333 | 1 | 0.2377 | - |
161
+ | 1.6667 | 50 | 0.0551 | - |
162
+ | 3.3333 | 100 | 0.0046 | - |
163
+ | 5.0 | 150 | 0.0031 | - |
164
+ | 6.6667 | 200 | 0.0024 | - |
165
+ | 8.3333 | 250 | 0.0022 | - |
166
+ | 10.0 | 300 | 0.002 | - |
167
+
168
  ### Framework Versions
169
  - Python: 3.10.12
170
  - SetFit: 1.0.3
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "patrickfleith/my-awesome-astro-text-classifier",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
  "architectures": [
4
  "BertModel"
5
  ],
config_setfit.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "normalize_embeddings": false,
3
  "labels": [
4
  "Propulsion",
5
  "Thermal Control",
6
  "Power Subsystem"
7
- ]
 
8
  }
 
1
  {
 
2
  "labels": [
3
  "Propulsion",
4
  "Thermal Control",
5
  "Power Subsystem"
6
+ ],
7
+ "normalize_embeddings": false
8
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:177637aff42e430a15bb5ead7d26d990ee7ceec2aebf8122ae4893907d5b12ca
3
  size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20dfc9830ecb5f48de13002e979b34f400b7464bf88f3f45681deb68998b7551
3
  size 133462128
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f8c4d0a79e9dcd77799fb6c440f357aed0b46f3cc2929b2279f12766b157f094
3
  size 10255
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8213047d5e6788e2b87b6291b19cfe913e64a14a25fdc5fad543009527f02fa
3
  size 10255
tokenizer_config.json CHANGED
@@ -46,19 +46,12 @@
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
- "max_length": 512,
50
  "model_max_length": 512,
51
  "never_split": null,
52
- "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
- "pad_token_type_id": 0,
55
- "padding_side": "right",
56
  "sep_token": "[SEP]",
57
- "stride": 0,
58
  "strip_accents": null,
59
  "tokenize_chinese_chars": true,
60
  "tokenizer_class": "BertTokenizer",
61
- "truncation_side": "right",
62
- "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]"
64
  }
 
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
 
49
  "model_max_length": 512,
50
  "never_split": null,
 
51
  "pad_token": "[PAD]",
 
 
52
  "sep_token": "[SEP]",
 
53
  "strip_accents": null,
54
  "tokenize_chinese_chars": true,
55
  "tokenizer_class": "BertTokenizer",
 
 
56
  "unk_token": "[UNK]"
57
  }