patrickjohncyh commited on
Commit
9d8b31f
1 Parent(s): afacf5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -26,7 +26,7 @@ Disclaimer: The model card adapts the model card from [here](https://huggingface
26
  ## Model Details
27
 
28
  UPDATE (10/03/23): We have updated the model! We found that [laion/CLIP-ViT-B-32-laion2B-s34B-b79K](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) checkpoint (thanks [Bin](https://www.linkedin.com/in/bin-duan-56205310/)!) worked better than original OpenAI CLIP on Fashion. We thus fine-tune a newer (and better!) version of FashionCLIP (henceforth FashionCLIP 2.0), while keeping the architecture the same. We postulate that the perofrmance gains afforded by `laion/CLIP-ViT-B-32-laion2B-s34B-b79K` are due to the increased training data (5x OpenAI CLIP data). Our [thesis](https://www.nature.com/articles/s41598-022-23052-9), however, remains the same -- fine-tuning `laion/CLIP` on our fashion dataset improved zero-shot perofrmance across our benchmarks. See the below table comparing weighted macro F1 score across models.
29
- `
30
 
31
  | Model | FMNIST | KAGL | DEEP |
32
  | ------------- | ------------- | ------------- | ------------- |
@@ -37,7 +37,7 @@ UPDATE (10/03/23): We have updated the model! We found that [laion/CLIP-ViT-B-32
37
 
38
  ---
39
 
40
- FashionCLIP is a CLIP-based model developed to produce general product representations for fashion concepts. Leveraging the pre-trained checkpoint (ViT-B/32) released by [OpenAI](https://github.com/openai/CLIP), we train FashionCLIP on a large, high-quality novel fashion dataset to study whether domain specific fine-tuning of CLIP-like models is sufficient to produce product representations that are zero-shot transferable to entirely new datasets and tassks. FashionCLIP was not developed for model deplyoment - to do so, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
41
 
42
  ### Model Date
43
 
 
26
  ## Model Details
27
 
28
  UPDATE (10/03/23): We have updated the model! We found that [laion/CLIP-ViT-B-32-laion2B-s34B-b79K](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) checkpoint (thanks [Bin](https://www.linkedin.com/in/bin-duan-56205310/)!) worked better than original OpenAI CLIP on Fashion. We thus fine-tune a newer (and better!) version of FashionCLIP (henceforth FashionCLIP 2.0), while keeping the architecture the same. We postulate that the perofrmance gains afforded by `laion/CLIP-ViT-B-32-laion2B-s34B-b79K` are due to the increased training data (5x OpenAI CLIP data). Our [thesis](https://www.nature.com/articles/s41598-022-23052-9), however, remains the same -- fine-tuning `laion/CLIP` on our fashion dataset improved zero-shot perofrmance across our benchmarks. See the below table comparing weighted macro F1 score across models.
29
+
30
 
31
  | Model | FMNIST | KAGL | DEEP |
32
  | ------------- | ------------- | ------------- | ------------- |
 
37
 
38
  ---
39
 
40
+ FashionCLIP is a CLIP-based model developed to produce general product representations for fashion concepts. Leveraging the pre-trained checkpoint (ViT-B/32) released by [OpenAI](https://github.com/openai/CLIP), we train FashionCLIP on a large, high-quality novel fashion dataset to study whether domain specific fine-tuning of CLIP-like models is sufficient to produce product representations that are zero-shot transferable to entirely new datasets and tasks. FashionCLIP was not developed for model deplyoment - to do so, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
41
 
42
  ### Model Date
43