#!/usr/bin/env python3 from datasets import load_dataset, load_metric import datasets import torch from transformers import AutoModelForCTC, AutoProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" ds = load_dataset("mozilla-foundation/common_voice_3_0", "tr", split="train+validation+test+other") wer = load_metric("wer") model = AutoModelForCTC.from_pretrained("./") model = model.to(device) processor = AutoProcessor.from_pretrained("./") # taken from # https://github.com/microsoft/UniSpeech/blob/main/UniSpeech/examples/unispeech/data/it/phonesMatches_reduced.json with open("./testSeqs_uniform_new_version.txt", "r") as f: lines = f.readlines() # retrieve ids model is evaluated on ids = [x.strip() for x in lines] ds = ds.filter(lambda p: p.split("/")[-1].split(".")[0] in ids, input_columns=["path"]) ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000)) def decode(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", sampling_rate=16_000).input_values input_values = input_values.to(device) logits = model(input_values).logits pred_ids = torch.argmax(logits, axis=-1) batch["id"] = batch["path"] batch["prediction"] = processor.batch_decode(pred_ids)[0] batch["target"] = processor.tokenizer.phonemize(batch["sentence"]) return batch out = ds.map(decode, remove_columns=ds.column_names) wer_out = wer.compute(predictions=out["prediction"], references=out["target"]) print("wer", wer_out)