--- language: - en --- ## Ars model This model was trained on stanford alpaca dataset ## To Run: from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", )\ model = PeftModel.from_pretrained(model, "patulya/alpaca7B-lora") PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. \### Instruction: {your_instruction} \### Response:""" inputs = tokenizer( PROMPT, return_tensors="pt", ) input_ids = inputs["input_ids"].cuda() generation_config = GenerationConfig(\ temperature=0.6,\ top_p=0.95,\ repetition_penalty=1.15,\ ) print("Generating...") generation_output = model.generate(\ input_ids=input_ids,\ generation_config=generation_config,\ return_dict_in_generate=True,\ output_scores=True,\ max_new_tokens=128,\ ) for s in generation_output.sequences: print(tokenizer.decode(s))