pavankantharaju commited on
Commit
48a5cad
·
1 Parent(s): 4150b3c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2616472a368ce9f0b8a50f68fddb4f8a92f4e09f1d073b1eb0c0f009eb28b40
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae16f9ddf30>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ae16f9e0e80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698589546657267509,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdvinv0/YRz/u9A8/QRa8P9AQsL/CMiu/CCVZP1yn075CAI2/ktoXv98NZD298ZE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8aWnv658wT7ZMfU+IXLJPyerYb9/nho/C5CDPyHaxr2fN4a/rE24vynIHr7KMkw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2+Ke/T9hHP+70Dz/wYM6+3gX7vdF9oD9BFrw/0BCwv8IyK7/OV2Y/NjHXvZL6KD0IJVk/XKfTvkIAjb+leOs+OxEKv7HW1r+S2he/3w1kPb3xkT79Rnm/lx8bPUT1UT+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.3122699 0.78064436 0.5623311 ]\n [ 1.4694291 -1.3755131 -0.66874325]\n [ 0.8482213 -0.41338623 -1.1015704 ]\n [-0.59317887 0.05567729 0.28504744]]",
34
+ "desired_goal": "[[-1.3097516 0.37790436 0.47889593]\n [ 1.5737954 -0.8815178 0.60398096]\n [ 1.0278333 -0.09709574 -1.0485724 ]\n [-1.4398704 -0.15506043 0.79765 ]]",
35
+ "observation": "[[-1.3122699 0.78064436 0.5623311 -0.40308332 -0.12256978 1.2538396 ]\n [ 1.4694291 -1.3755131 -0.66874325 0.8997773 -0.10507433 0.04125459]\n [ 0.8482213 -0.41338623 -1.1015704 0.45990482 -0.5393254 -1.6784269 ]\n [-0.59317887 0.05567729 0.28504744 -0.97373945 0.03787192 0.8201487 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr3ewu90Owj1/yEw90+4IO8mzxL17C30+UuA4PaZPnDsfKm0+QlA1vVmHfL3+7/Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.00538536 0.09475491 0.0499959 ]\n [ 0.00208943 -0.09604604 0.2471141 ]\n [ 0.0451358 0.00477024 0.23160599]\n [-0.04426599 -0.06165252 0.11959837]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8/TCtRvWH2MAWyUSwOMAXSUR0Co/6dUjs2OdX2UKGgGR7/ZZU1hsqJ/aAdLBGgIR0CpAFUeU6gedX2UKGgGR7/VGLDQ7cO9aAdLBGgIR0CpAAdsi0OWdX2UKGgGR7/K+sYEW69TaAdLA2gIR0Co/7TrE9+xdX2UKGgGR7/aEn9ehPCVaAdLBGgIR0CpALTPSlWPdX2UKGgGR7/XHtF8XvYwaAdLBGgIR0CpAGkS/TLGdX2UKGgGR7/QZPl+3H7xaAdLA2gIR0Co/8QGGEf1dX2UKGgGR7+ow482aUiZaAdLAWgIR0CpAG26kIomdX2UKGgGR7/QJxvNu+AVaAdLBGgIR0CpABtwJgLJdX2UKGgGR7/Y11nuiN83aAdLBGgIR0CpAMYIrvsrdX2UKGgGR7+77rLQokRjaAdLAmgIR0Co/80kGA09dX2UKGgGR7+nhqCYkVvdaAdLAWgIR0CpAMyb6P8ydX2UKGgGR7/N1q33Hq/uaAdLA2gIR0CpAH1loUSJdX2UKGgGR7/Wu3c580DVaAdLA2gIR0CpACrxiG34dX2UKGgGR7/C9q1w5vLpaAdLAmgIR0CpANXE61b8dX2UKGgGR7/QV2A5Jbt7aAdLA2gIR0Co/91GTcIrdX2UKGgGR7+3MzMzMzMzaAdLAmgIR0CpADQKa5PNdX2UKGgGR7/IeXAuZkTYaAdLA2gIR0CpAIt0NjLCdX2UKGgGR7+hgZ0jkdWAaAdLAWgIR0CpADjwpe/pdX2UKGgGR7/MS39aUzKtaAdLA2gIR0CpAOalDWsjdX2UKGgGR7/Nm03Ov+wUaAdLA2gIR0Co/+3WFvhqdX2UKGgGR7/DOtW+49X+aAdLAmgIR0CpAJdRR/EwdX2UKGgGR7+5yXD3ueBhaAdLAmgIR0CpAO8w5/9YdX2UKGgGR7/QY/Vy3kPuaAdLA2gIR0CpAEk3sHB2dX2UKGgGR7/IYoAn2IweaAdLA2gIR0Co//qX4TK1dX2UKGgGR7/Uaq0dBBzFaAdLA2gIR0CpAKQrUb1idX2UKGgGR7/BV5KODJ2daAdLAmgIR0CpAFGcOLBLdX2UKGgGR7/cWxhUipvQaAdLBGgIR0CpAQIi9qUNdX2UKGgGR7+2508vEjxDaAdLAmgIR0CpAFvppvgndX2UKGgGR7/RCpm29crzaAdLA2gIR0CpAAlXaJyidX2UKGgGR7/Tsu3+dbxFaAdLA2gIR0CpALLJCBwudX2UKGgGR7+Z4KQaJhvzaAdLAWgIR0CpAA2YfGModX2UKGgGR7/Wbg0j1PFeaAdLA2gIR0CpAQ5cC5mRdX2UKGgGR7++tEG7jDKpaAdLAmgIR0CpABWOQyRCdX2UKGgGR7/RX5FgDzRQaAdLA2gIR0CpAMFzEJjUdX2UKGgGR7/VXa8Hv+fiaAdLBGgIR0CpAG72tdRjdX2UKGgGR7+ibpeNT987aAdLAWgIR0CpAByQo1DTdX2UKGgGR7/RFDOTq0MPaAdLA2gIR0CpAR01Q66rdX2UKGgGR7/ACPp6hQFcaAdLAmgIR0CpAHbhvR7adX2UKGgGR7/UDsMRYigTaAdLA2gIR0CpAM3lS0jUdX2UKGgGR7/KxREWqLjxaAdLA2gIR0CpACjwH7gsdX2UKGgGR7/NXjENvwVkaAdLA2gIR0CpAIbr9l3AdX2UKGgGR7/XsdDIBBAwaAdLBGgIR0CpATFs54nndX2UKGgGR7/O176YVqN7aAdLA2gIR0CpAN3N9ph4dX2UKGgGR7/K2y9mHxjKaAdLA2gIR0CpADi8vmHQdX2UKGgGR7+mh24d6sySaAdLAWgIR0CpATXqZ+hHdX2UKGgGR7+aCYkVvddnaAdLAWgIR0CpADy6UaAGdX2UKGgGR7/H5nlGPPszaAdLA2gIR0CpAJOfVZs9dX2UKGgGR7/P3kgfU4JeaAdLA2gIR0CpAOquB+WodX2UKGgGR7/TSFXaJyhjaAdLA2gIR0CpAEw6QvHtdX2UKGgGR7/Xgflp48lpaAdLBGgIR0CpAUmKQ7tBdX2UKGgGR7/RWWhRIjGDaAdLA2gIR0CpAKN3GGVSdX2UKGgGR7+mzv7WNFSbaAdLAWgIR0CpAFEFnqVydX2UKGgGR7/WkJrtVrAQaAdLA2gIR0CpAPpQDV6NdX2UKGgGR7+/b212JSBLaAdLAmgIR0CpAVIQe3hGdX2UKGgGR7+hBRhttQ9BaAdLAWgIR0CpAP56t1ZDdX2UKGgGR7/AyfthNM4+aAdLAmgIR0CpAFkY4yXVdX2UKGgGR7/BdtVJcxCZaAdLAmgIR0CpAQzg/C66dX2UKGgGR7/XVsUIsyzpaAdLBGgIR0CpALuPNmlJdX2UKGgGR7+8rI5o4+8oaAdLAmgIR0CpAGlHjIaMdX2UKGgGR7/QKHfuTibVaAdLA2gIR0CpAWaZYxL1dX2UKGgGR7+oZMtbs4T9aAdLAWgIR0CpAWrYPGyYdX2UKGgGR7/OLfk3juKGaAdLA2gIR0CpARsU7CBPdX2UKGgGR7/ES2Yv38GcaAdLA2gIR0CpAMiB5HEudX2UKGgGR7/MzyjHn2ZiaAdLA2gIR0CpAHYSYgJUdX2UKGgGR7/UvAXVLBbfaAdLA2gIR0CpAXlSKm8/dX2UKGgGR7/H4zrNW2gGaAdLA2gIR0CpASobOu7pdX2UKGgGR7/TTqjafzz3aAdLA2gIR0CpANf0/W1/dX2UKGgGR7/FMbFS88LbaAdLAmgIR0CpAYKC6H0sdX2UKGgGR7/VTOPeYUnHaAdLBGgIR0CpAInoPkJbdX2UKGgGR7/ApiI+GGmDaAdLAmgIR0CpAODgydnTdX2UKGgGR7/Jgtvn8sMBaAdLA2gIR0CpATemFajfdX2UKGgGR7+15a/yoXKsaAdLAmgIR0CpAJJx3mmtdX2UKGgGR7/a384xUNrkaAdLBGgIR0CpAZXHaN+9dX2UKGgGR7/TcHnlnyuqaAdLA2gIR0CpAO98Rcu8dX2UKGgGR7/K3PRiPQv6aAdLA2gIR0CpAKDZ+QU6dX2UKGgGR7/eFn7HhjvvaAdLBGgIR0CpAUpBX0XhdX2UKGgGR7+leD3/Pw/gaAdLAWgIR0CpAKUqQRwqdX2UKGgGR7/INKAavRqoaAdLA2gIR0CpAaKAz544dX2UKGgGR7/QgNPP9kz5aAdLA2gIR0CpAPxKHwgDdX2UKGgGR7/K8f3evZAZaAdLA2gIR0CpAVmgJ1JUdX2UKGgGR7/K5uqFRHf/aAdLA2gIR0CpALSOBDohdX2UKGgGR7/PNYbKifxuaAdLA2gIR0CpAbHCXQdCdX2UKGgGR7/GE0SAYpDvaAdLAmgIR0CpAL1pTMq0dX2UKGgGR7/Dix3V09yMaAdLAmgIR0CpAbqYJE6UdX2UKGgGR7/YfseGO+7EaAdLBWgIR0CpARRxLkCFdX2UKGgGR7/aKnvUjLSvaAdLBGgIR0CpAW6dlNDddX2UKGgGR7/MUGFBY3efaAdLA2gIR0CpAM5gogFHdX2UKGgGR7/ANe+mFajfaAdLAmgIR0CpAXgSWZ7YdX2UKGgGR7/PttQ9A5aNaAdLA2gIR0CpASXWe6I4dX2UKGgGR7/WRceKbaysaAdLBGgIR0CpAdCo86mwdX2UKGgGR7/WvE0iyIHkaAdLA2gIR0CpANvAGjbjdX2UKGgGR7/RW9lEqlP8aAdLA2gIR0CpAYd7OVxCdX2UKGgGR7/ImPYFqzqsaAdLA2gIR0CpATU0elsQdX2UKGgGR7/RgwXZXdTHaAdLA2gIR0CpAd+Eh7mddX2UKGgGR7+Wi5/b0voNaAdLAWgIR0CpAYwhGH58dX2UKGgGR7+5f6XSjQAuaAdLAmgIR0CpAOcP4EfUdX2UKGgGR7+Dt9hJAdGRaAdLAWgIR0CpAeQ1JlJ6dX2UKGgGR7/BvrnkkrwwaAdLAmgIR0CpAT3Ov+wUdX2UKGgGR7/CdV/+bVjJaAdLAmgIR0CpAO8S5AhTdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a127c6ffa297b43104d4bd46308818b9e8d30c3c81a3c3b837d10488d073a211
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fa98da7971d19a59b43c0a3708101b1ff925c9bc90f4b4f7f7038ad59310773
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae16f9ddf30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae16f9e0e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698589546657267509, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdvinv0/YRz/u9A8/QRa8P9AQsL/CMiu/CCVZP1yn075CAI2/ktoXv98NZD298ZE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8aWnv658wT7ZMfU+IXLJPyerYb9/nho/C5CDPyHaxr2fN4a/rE24vynIHr7KMkw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2+Ke/T9hHP+70Dz/wYM6+3gX7vdF9oD9BFrw/0BCwv8IyK7/OV2Y/NjHXvZL6KD0IJVk/XKfTvkIAjb+leOs+OxEKv7HW1r+S2he/3w1kPb3xkT79Rnm/lx8bPUT1UT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3122699 0.78064436 0.5623311 ]\n [ 1.4694291 -1.3755131 -0.66874325]\n [ 0.8482213 -0.41338623 -1.1015704 ]\n [-0.59317887 0.05567729 0.28504744]]", "desired_goal": "[[-1.3097516 0.37790436 0.47889593]\n [ 1.5737954 -0.8815178 0.60398096]\n [ 1.0278333 -0.09709574 -1.0485724 ]\n [-1.4398704 -0.15506043 0.79765 ]]", "observation": "[[-1.3122699 0.78064436 0.5623311 -0.40308332 -0.12256978 1.2538396 ]\n [ 1.4694291 -1.3755131 -0.66874325 0.8997773 -0.10507433 0.04125459]\n [ 0.8482213 -0.41338623 -1.1015704 0.45990482 -0.5393254 -1.6784269 ]\n [-0.59317887 0.05567729 0.28504744 -0.97373945 0.03787192 0.8201487 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr3ewu90Owj1/yEw90+4IO8mzxL17C30+UuA4PaZPnDsfKm0+QlA1vVmHfL3+7/Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00538536 0.09475491 0.0499959 ]\n [ 0.00208943 -0.09604604 0.2471141 ]\n [ 0.0451358 0.00477024 0.23160599]\n [-0.04426599 -0.06165252 0.11959837]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8/TCtRvWH2MAWyUSwOMAXSUR0Co/6dUjs2OdX2UKGgGR7/ZZU1hsqJ/aAdLBGgIR0CpAFUeU6gedX2UKGgGR7/VGLDQ7cO9aAdLBGgIR0CpAAdsi0OWdX2UKGgGR7/K+sYEW69TaAdLA2gIR0Co/7TrE9+xdX2UKGgGR7/aEn9ehPCVaAdLBGgIR0CpALTPSlWPdX2UKGgGR7/XHtF8XvYwaAdLBGgIR0CpAGkS/TLGdX2UKGgGR7/QZPl+3H7xaAdLA2gIR0Co/8QGGEf1dX2UKGgGR7+ow482aUiZaAdLAWgIR0CpAG26kIomdX2UKGgGR7/QJxvNu+AVaAdLBGgIR0CpABtwJgLJdX2UKGgGR7/Y11nuiN83aAdLBGgIR0CpAMYIrvsrdX2UKGgGR7+77rLQokRjaAdLAmgIR0Co/80kGA09dX2UKGgGR7+nhqCYkVvdaAdLAWgIR0CpAMyb6P8ydX2UKGgGR7/N1q33Hq/uaAdLA2gIR0CpAH1loUSJdX2UKGgGR7/Wu3c580DVaAdLA2gIR0CpACrxiG34dX2UKGgGR7/C9q1w5vLpaAdLAmgIR0CpANXE61b8dX2UKGgGR7/QV2A5Jbt7aAdLA2gIR0Co/91GTcIrdX2UKGgGR7+3MzMzMzMzaAdLAmgIR0CpADQKa5PNdX2UKGgGR7/IeXAuZkTYaAdLA2gIR0CpAIt0NjLCdX2UKGgGR7+hgZ0jkdWAaAdLAWgIR0CpADjwpe/pdX2UKGgGR7/MS39aUzKtaAdLA2gIR0CpAOalDWsjdX2UKGgGR7/Nm03Ov+wUaAdLA2gIR0Co/+3WFvhqdX2UKGgGR7/DOtW+49X+aAdLAmgIR0CpAJdRR/EwdX2UKGgGR7+5yXD3ueBhaAdLAmgIR0CpAO8w5/9YdX2UKGgGR7/QY/Vy3kPuaAdLA2gIR0CpAEk3sHB2dX2UKGgGR7/IYoAn2IweaAdLA2gIR0Co//qX4TK1dX2UKGgGR7/Uaq0dBBzFaAdLA2gIR0CpAKQrUb1idX2UKGgGR7/BV5KODJ2daAdLAmgIR0CpAFGcOLBLdX2UKGgGR7/cWxhUipvQaAdLBGgIR0CpAQIi9qUNdX2UKGgGR7+2508vEjxDaAdLAmgIR0CpAFvppvgndX2UKGgGR7/RCpm29crzaAdLA2gIR0CpAAlXaJyidX2UKGgGR7/Tsu3+dbxFaAdLA2gIR0CpALLJCBwudX2UKGgGR7+Z4KQaJhvzaAdLAWgIR0CpAA2YfGModX2UKGgGR7/Wbg0j1PFeaAdLA2gIR0CpAQ5cC5mRdX2UKGgGR7++tEG7jDKpaAdLAmgIR0CpABWOQyRCdX2UKGgGR7/RX5FgDzRQaAdLA2gIR0CpAMFzEJjUdX2UKGgGR7/VXa8Hv+fiaAdLBGgIR0CpAG72tdRjdX2UKGgGR7+ibpeNT987aAdLAWgIR0CpAByQo1DTdX2UKGgGR7/RFDOTq0MPaAdLA2gIR0CpAR01Q66rdX2UKGgGR7/ACPp6hQFcaAdLAmgIR0CpAHbhvR7adX2UKGgGR7/UDsMRYigTaAdLA2gIR0CpAM3lS0jUdX2UKGgGR7/KxREWqLjxaAdLA2gIR0CpACjwH7gsdX2UKGgGR7/NXjENvwVkaAdLA2gIR0CpAIbr9l3AdX2UKGgGR7/XsdDIBBAwaAdLBGgIR0CpATFs54nndX2UKGgGR7/O176YVqN7aAdLA2gIR0CpAN3N9ph4dX2UKGgGR7/K2y9mHxjKaAdLA2gIR0CpADi8vmHQdX2UKGgGR7+mh24d6sySaAdLAWgIR0CpATXqZ+hHdX2UKGgGR7+aCYkVvddnaAdLAWgIR0CpADy6UaAGdX2UKGgGR7/H5nlGPPszaAdLA2gIR0CpAJOfVZs9dX2UKGgGR7/P3kgfU4JeaAdLA2gIR0CpAOquB+WodX2UKGgGR7/TSFXaJyhjaAdLA2gIR0CpAEw6QvHtdX2UKGgGR7/Xgflp48lpaAdLBGgIR0CpAUmKQ7tBdX2UKGgGR7/RWWhRIjGDaAdLA2gIR0CpAKN3GGVSdX2UKGgGR7+mzv7WNFSbaAdLAWgIR0CpAFEFnqVydX2UKGgGR7/WkJrtVrAQaAdLA2gIR0CpAPpQDV6NdX2UKGgGR7+/b212JSBLaAdLAmgIR0CpAVIQe3hGdX2UKGgGR7+hBRhttQ9BaAdLAWgIR0CpAP56t1ZDdX2UKGgGR7/AyfthNM4+aAdLAmgIR0CpAFkY4yXVdX2UKGgGR7/BdtVJcxCZaAdLAmgIR0CpAQzg/C66dX2UKGgGR7/XVsUIsyzpaAdLBGgIR0CpALuPNmlJdX2UKGgGR7+8rI5o4+8oaAdLAmgIR0CpAGlHjIaMdX2UKGgGR7/QKHfuTibVaAdLA2gIR0CpAWaZYxL1dX2UKGgGR7+oZMtbs4T9aAdLAWgIR0CpAWrYPGyYdX2UKGgGR7/OLfk3juKGaAdLA2gIR0CpARsU7CBPdX2UKGgGR7/ES2Yv38GcaAdLA2gIR0CpAMiB5HEudX2UKGgGR7/MzyjHn2ZiaAdLA2gIR0CpAHYSYgJUdX2UKGgGR7/UvAXVLBbfaAdLA2gIR0CpAXlSKm8/dX2UKGgGR7/H4zrNW2gGaAdLA2gIR0CpASobOu7pdX2UKGgGR7/TTqjafzz3aAdLA2gIR0CpANf0/W1/dX2UKGgGR7/FMbFS88LbaAdLAmgIR0CpAYKC6H0sdX2UKGgGR7/VTOPeYUnHaAdLBGgIR0CpAInoPkJbdX2UKGgGR7/ApiI+GGmDaAdLAmgIR0CpAODgydnTdX2UKGgGR7/Jgtvn8sMBaAdLA2gIR0CpATemFajfdX2UKGgGR7+15a/yoXKsaAdLAmgIR0CpAJJx3mmtdX2UKGgGR7/a384xUNrkaAdLBGgIR0CpAZXHaN+9dX2UKGgGR7/TcHnlnyuqaAdLA2gIR0CpAO98Rcu8dX2UKGgGR7/K3PRiPQv6aAdLA2gIR0CpAKDZ+QU6dX2UKGgGR7/eFn7HhjvvaAdLBGgIR0CpAUpBX0XhdX2UKGgGR7+leD3/Pw/gaAdLAWgIR0CpAKUqQRwqdX2UKGgGR7/INKAavRqoaAdLA2gIR0CpAaKAz544dX2UKGgGR7/QgNPP9kz5aAdLA2gIR0CpAPxKHwgDdX2UKGgGR7/K8f3evZAZaAdLA2gIR0CpAVmgJ1JUdX2UKGgGR7/K5uqFRHf/aAdLA2gIR0CpALSOBDohdX2UKGgGR7/PNYbKifxuaAdLA2gIR0CpAbHCXQdCdX2UKGgGR7/GE0SAYpDvaAdLAmgIR0CpAL1pTMq0dX2UKGgGR7/Dix3V09yMaAdLAmgIR0CpAbqYJE6UdX2UKGgGR7/YfseGO+7EaAdLBWgIR0CpARRxLkCFdX2UKGgGR7/aKnvUjLSvaAdLBGgIR0CpAW6dlNDddX2UKGgGR7/MUGFBY3efaAdLA2gIR0CpAM5gogFHdX2UKGgGR7/ANe+mFajfaAdLAmgIR0CpAXgSWZ7YdX2UKGgGR7/PttQ9A5aNaAdLA2gIR0CpASXWe6I4dX2UKGgGR7/WRceKbaysaAdLBGgIR0CpAdCo86mwdX2UKGgGR7/WvE0iyIHkaAdLA2gIR0CpANvAGjbjdX2UKGgGR7/RW9lEqlP8aAdLA2gIR0CpAYd7OVxCdX2UKGgGR7/ImPYFqzqsaAdLA2gIR0CpATU0elsQdX2UKGgGR7/RgwXZXdTHaAdLA2gIR0CpAd+Eh7mddX2UKGgGR7+Wi5/b0voNaAdLAWgIR0CpAYwhGH58dX2UKGgGR7+5f6XSjQAuaAdLAmgIR0CpAOcP4EfUdX2UKGgGR7+Dt9hJAdGRaAdLAWgIR0CpAeQ1JlJ6dX2UKGgGR7/BvrnkkrwwaAdLAmgIR0CpAT3Ov+wUdX2UKGgGR7/CdV/+bVjJaAdLAmgIR0CpAO8S5AhTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (662 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.19549058936536312, "std_reward": 0.0901829379619342, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-29T15:24:10.713414"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61dff904aa962b67eaddba0cb73e48e7211e9bde96797eae041f9aee68b27b03
3
+ size 2623