ppo-LunarLander-v2 / config.json
pavankantharaju's picture
Uploading Version 1 of PPO LunarLander-v2 trained agent
e4db7d8
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bbad13250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bbad132e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bbad13370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bbad13400>", "_build": "<function ActorCriticPolicy._build at 0x7f9bbad13490>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bbad13520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9bbad135b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bbad13640>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bbad136d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bbad13760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bbad137f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bbad13880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9bbad0b880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 1, "action_noise": null, "start_time": 1688936198837528734, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANPsrD6E5rU+CpB6vpcIjL5+oXE9ai+AvQAAAAAAAAAAwI4ZPp08RD4vuy+96kmVvp/7+zwdg4e8AAAAAAAAAACmQto99nhguiOh/r2/lU42PLwnO+hRt7UAAAAAAACAP82M8rs8a2s9anAJPvcjSb47eUk9cNW6vAAAAAAAAAAAzR5MvJRqsj8K+yS+CwVBvlOxD7zlG4Q7AAAAAAAAAAAawOY9XjGTP9t1/D7lQjy/nJfIPX5AFz4AAAAAAAAAAA4Fgr6FU2w+jeJVPuOeZL4E/4y9lcO5PAAAAAAAAAAAQFsuPm3zIz97G00+9e8Wv5WOFD4XBRq9AAAAAAAAAAANCoU9j/YfulzDuL1l4AozVf05O0txmrIAAIA/AAAAAJo23z32eFM5uyxpOgdQJz1Yn6y62zzyOgAAAAAAAIA/hpF1PizVlz5Lan2+i06FvnU8Gj1GKl+9AAAAAAAAAACzOz2+AXCavLRtyzrHxSk5Ek4JPnZFB7oAAIA/AACAPxrkKT5Dw3m8+mGmupp0jjltLuC97hofOgAAgD8AAIA/ZsYaOylYLrzrlGu7cLLUO4pJnL1cor88AACAPwAAgD+TrD++3LBGP0YMkby7wBG/ZXsTvt2447wAAAAAAAAAAI0NmD09hAO7p4aXu65zojyF+zM8Z2CLvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8bG1hLGrGMAWyUS8+MAXSUR0CWS0WqcVgydX2UKGgGR0Bwsl/BnBciaAdLxmgIR0CWS8hky1u0dX2UKGgGR0Bx2Ww1R+BpaAdL12gIR0CWS/2bobGWdX2UKGgGR0BydPjbSJCTaAdL92gIR0CWTIUDMeOodX2UKGgGR0Bc8hJd0JWvaAdN6ANoCEdAlkzQLE1l5HV9lChoBkdAcefksz2vjmgHS+NoCEdAlk1ZHd43WHV9lChoBkdAbqht3wCr92gHS8poCEdAlk16dH2AXnV9lChoBkdAcC3z7di2D2gHS7xoCEdAlk2ohyKekHV9lChoBkdAcOmkuHvc8GgHTREBaAhHQJZNscuJ1q51fZQoaAZHQHCskMXrMTxoB00SAWgIR0CWTdnZkCmudX2UKGgGR0Bw5Fpxm03PaAdL7mgIR0CWTmZ1V5rydX2UKGgGR0Bv9AhyKekIaAdLu2gIR0CWTqK+i8FqdX2UKGgGR0BypGvs7dSEaAdL1mgIR0CWTr7nPmgbdX2UKGgGR0Bx9BiuuA7QaAdL8mgIR0CWTyzQ/oq1dX2UKGgGR0BuqRHEuQIVaAdLyWgIR0CWUMgE2YOUdX2UKGgGR0BvwN1KXfIkaAdLxmgIR0CWUgniNsFddX2UKGgGR0By9wIToMa1aAdL7GgIR0CWUmNX5nDjdX2UKGgGR0BvX0QK8cuKaAdLumgIR0CWUogM+eOGdX2UKGgGR0BwIiLm6oVEaAdLxGgIR0CWUoIy0rsjdX2UKGgGR0Bw+p2nsLOSaAdL+2gIR0CWUqophF3IdX2UKGgGR0BwhpUNrj5saAdL6GgIR0CWUsCcf/3ndX2UKGgGR0BwRs5BC2MLaAdLxGgIR0CWUtnctXgcdX2UKGgGR0BvS1jiGWUsaAdLwGgIR0CWUuShakhzdX2UKGgGR0Bx/G5RTCLuaAdLwmgIR0CWU37jT8YRdX2UKGgGR0BwP/3ueBhAaAdL6mgIR0CWU570nPVvdX2UKGgGR0BxmJzYEnstaAdLtGgIR0CWU+7Qb+98dX2UKGgGR0Bwa+d07r9maAdLxmgIR0CWU+txdY4idX2UKGgGR0Bt1H+ERJ2/aAdLvWgIR0CWVbCjDbaidX2UKGgGR0BvC2b9ZRsNaAdLv2gIR0CWVwetSydGdX2UKGgGR0BuHcrI5o4/aAdLwWgIR0CWV5GR3eN2dX2UKGgGR0BwegdxQzk7aAdLzmgIR0CWWFm4AjptdX2UKGgGR0ByY+OAAhjfaAdL2mgIR0CWWKO/+Kj0dX2UKGgGR0ByEXfAKv3baAdLt2gIR0CWWQBqsU7CdX2UKGgGR0Byt4TVUdaMaAdL/GgIR0CWWUyWAwwkdX2UKGgGR0BxzfowEhaDaAdL7mgIR0CWWWtlqagFdX2UKGgGR0Bxq9Pi1iOOaAdL/mgIR0CWWYFdcB2fdX2UKGgGR0BxhJrrPdEcaAdL22gIR0CWWa1MM7U5dX2UKGgGR0BuUnaakRBeaAdNDAFoCEdAlln/Aj6eoXV9lChoBkdAWqVtZV4oqmgHTegDaAhHQJZabUXpGF11fZQoaAZHQHIY+Tq0MPVoB0vyaAhHQJZalWfbsWx1fZQoaAZHQHHpiFCb+cZoB00FAWgIR0CWWpjLSuyNdX2UKGgGR0BlXfUx20RfaAdN6ANoCEdAllsTWsijcnV9lChoBkdAb721stTUAmgHS7FoCEdAllvOD3/PxHV9lChoBkdAcmtJpFkQPWgHS/loCEdAllxsDB/I83V9lChoBkdAcbElO45LiGgHS8VoCEdAll1jGT9sJ3V9lChoBkdAccmZQHiWFGgHS95oCEdAll1oqwyIpHV9lChoBkdAcHsGwzLwF2gHS7loCEdAll5OuaF23nV9lChoBkdAcDjSrHU+cGgHS9VoCEdAll5V2V3Ux3V9lChoBkdAcVfC2c8Tz2gHS6xoCEdAll81GG21D3V9lChoBkdAcUM5eZ5Rj2gHS8ZoCEdAll98qFyq/HV9lChoBkdAcMEXZXdTHmgHS91oCEdAll9vKyOaOXV9lChoBkdAckED0lJHy2gHS+xoCEdAlmAU3GXHBHV9lChoBkdAcl66r/82rGgHS+VoCEdAlmApZKWcBnV9lChoBkdAb//Yr8R+SmgHS8BoCEdAlmAx3JPqLXV9lChoBkdAclSzU7Sy+2gHTSEBaAhHQJZhbPa+N991fZQoaAZHQHIxGDg62fFoB0v5aAhHQJZiIcDKYAt1fZQoaAZHQHFJlX/5tWNoB0vwaAhHQJZiqVnmJWN1fZQoaAZHQHD5Cu2Zy+9oB0uvaAhHQJZjpuIhyKh1fZQoaAZHQHGhsIu5BkZoB00JAWgIR0CWZKqWkadddX2UKGgGR0By3dgCwKSgaAdL8mgIR0CWZMeOn2qUdX2UKGgGR0ByImO/+Kj0aAdLwmgIR0CWZU0ygwoLdX2UKGgGR0BxzFltj0+UaAdLrWgIR0CWZbGLDQ7cdX2UKGgGR0Bu+3AXVLBbaAdL2GgIR0CWZiBZIQOGdX2UKGgGR0BxNlLIxQBQaAdLpmgIR0CWZi+rlvIfdX2UKGgGR0ByVt5hScbzaAdNBAFoCEdAlmbe+ZgG8nV9lChoBkdAckzhLXcxkGgHS/BoCEdAlmgWAXl8xHV9lChoBkdAcnWzvJA+p2gHS/5oCEdAlmjy17Y023V9lChoBkdAcLpvCdjG1mgHS+9oCEdAlmkaiGnGbXV9lChoBkdAcTT0cfeUIWgHS89oCEdAlmlpMtbs4XV9lChoBkdAcbJhFmWdE2gHS/doCEdAlmmCRGMGYHV9lChoBkdAcGGKzRhMJ2gHS+poCEdAlmtNzjm0V3V9lChoBkdAb21qCYkVvmgHS8loCEdAlmu2Q8wHq3V9lChoBkdAcbTfXf642GgHS65oCEdAlmu7f1pTM3V9lChoBkdAcUKCl7+kxmgHS7poCEdAlm3xR64Ue3V9lChoBkdAZad5ftx+8WgHTegDaAhHQJZucsNDtw91fZQoaAZHQG9QTW5H3DhoB0vFaAhHQJZuhtGd7OV1fZQoaAZHQHMvMXm/339oB0v/aAhHQJZv9yPuG9J1fZQoaAZHQHAFLMX7+DRoB0vBaAhHQJZwPhky1u11fZQoaAZHQHNpZV4oqkNoB00YAWgIR0CWcFXoTwlTdX2UKGgGR0BxgxRKpT/AaAdL62gIR0CWcJ+WnjyXdX2UKGgGR0Bvpusmv4dqaAdLwGgIR0CWcNoexOcldX2UKGgGR0BvLEWEbo8qaAdL0WgIR0CWcS93bEgodX2UKGgGR0BxlhMM7U5NaAdNJQFoCEdAlnFU/wAlwHV9lChoBkdAceWrUsnRcGgHS8JoCEdAlnKapPykK3V9lChoBkdAcMRBas6q82gHS9JoCEdAlnLGf9P1tnV9lChoBkdAcR7C53C9AWgHS+toCEdAlnPO5z5oG3V9lChoBkdAcRyTGo73f2gHTTABaAhHQJZ0RkbxVhl1fZQoaAZHQHCPPoNd7fJoB0vXaAhHQJZ0s3DNyHV1fZQoaAZHQHCC17hNucdoB0vbaAhHQJZ1JVea8Yh1fZQoaAZHQG/TT+vQnhNoB0viaAhHQJZ1TXL/0d11fZQoaAZHQHDvChi9ZidoB0u6aAhHQJZ1Ztygf2d1fZQoaAZHQHGkgnhKlHloB0ueaAhHQJZ1w75mAb11fZQoaAZHQHEyowM6RyRoB0vPaAhHQJZ2Upb2USt1fZQoaAZHQHDoUdFOO81oB0vJaAhHQJZ2Y1vVEux1fZQoaAZHQHFsM/lhgE5oB0v0aAhHQJZ2vnq3VkN1fZQoaAZHQHFytxAB1cNoB0vnaAhHQJZ2rDiwSrZ1fZQoaAZHQHIi02cawUxoB0vwaAhHQJZ36jxkNF11fZQoaAZHQHEr6lYU34toB0vPaAhHQJZ4pCrtE5R1fZQoaAZHQHAELGNrCWNoB0v1aAhHQJZ5j7qIJqt1fZQoaAZHQG5/V01ZTydoB0vbaAhHQJZ5/c8DB/J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}