File size: 26,396 Bytes
bc8fc43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Perry syndrome is a familial parkinsonism associated with central
hypoventilation, mental depression, and weight loss.
sentences:
- List features of the Perry syndrome.
- Which is the main abnormality that arises with Sox9 locus duplication?
- Was modafinil tested for schizophrenia treatment?
- source_sentence: Yes. HDAC1 is required for GATA-1 transcription activity, global
chromatin occupancy and hematopoiesis.
sentences:
- Is HDAC1 required for GATA-1 transcriptional activity?
- Which cells are affected in radiation-induced leukemias?
- Is phospholamban phosphorylated by Protein kinase A?
- source_sentence: Long noncoding RNAs (lncRNAs) constitute the majority of transcripts
in the mammalian genomes, and yet, their functions remain largely unknown. As
part of the FANTOM6 project, the expression of 285 lncRNAs was systematically
knocked down in human dermal fibroblasts. Cellular growth, morphological changes,
and transcriptomic responses were quantified using Capped Analysis of Gene Expression
(CAGE).The functional annotation of the mammalian genome 6 (FANTOM6) project aims
to systematically map all human long noncoding RNAs (lncRNAs) in a gene-dependent
manner through dedicated efforts from national and international teams
sentences:
- What delivery system is used for the Fluzone Intradermal vaccine?
- What is dovitinib?
- Which class of genomic elements was assessed as part of the FANTOM6 project?
- source_sentence: ' The proband had normal molecular analysis of the glypican 6 gene
(GPC6), which was recently reported as a candidate for autosomal recessive omodysplasiaThe
proband had normal molecular analysis of the glypican 6 gene (GPC6), which was
recently reported as a candidate for autosomal recessive omodysplasiaThe glypican
6 gene (GPC6), which was recently reported as a candidate for autosomal recessive
omodysplasia.Omodysplasia is a rare autosomal recessive disorder with a frequency
of 1 in 50,000 newborn, and is associated with mutations in the GPC6 gene on chromosome
13.'
sentences:
- What is the effect of ivabradine in heart failure with preserved ejection fraction?
- What rare disease is associated with a mutation in the GPC6 gene on chromosome
13?
- What is the effect of rHDL-apoE3 on endothelial cell migration?
- source_sentence: Yes, numerous whole exome sequencing studies of ALzheimer patients
have been conducted.
sentences:
- Is muscle regeneration possible in mdx mice with the use of induced mesenchymal
stem cells?
- Has whole exome sequencing been performed in Alzheimer patients?
- How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.940677966101695
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9576271186440678
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.961864406779661
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31355932203389825
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19152542372881357
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09618644067796611
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.940677966101695
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9576271186440678
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.961864406779661
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9149563623470877
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8990348399246703
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8999167242053622
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9449152542372882
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9555084745762712
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3149717514124293
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19110169491525428
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9449152542372882
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9555084745762712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9136223756024043
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8979166666666664
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8990624087448101
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8389830508474576
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.934322033898305
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9470338983050848
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8389830508474576
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3114406779661017
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.189406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8389830508474576
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.934322033898305
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9470338983050848
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9053426368336166
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8872721616895344
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8879933659912613
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8241525423728814
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9110169491525424
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9322033898305084
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9470338983050848
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8241525423728814
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30367231638418074
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1864406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09470338983050848
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8241525423728814
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9110169491525424
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9322033898305084
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9470338983050848
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8905411432220106
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8719422585418346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8732028981082185
name: Cosine Map@100
---
# BGE base BioASQ Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed")
# Run inference
sentences = [
'Yes, numerous whole exome sequencing studies of ALzheimer patients have been conducted.',
'Has whole exome sequencing been performed in Alzheimer patients?',
'How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8517 |
| cosine_accuracy@3 | 0.9407 |
| cosine_accuracy@5 | 0.9576 |
| cosine_accuracy@10 | 0.9619 |
| cosine_precision@1 | 0.8517 |
| cosine_precision@3 | 0.3136 |
| cosine_precision@5 | 0.1915 |
| cosine_precision@10 | 0.0962 |
| cosine_recall@1 | 0.8517 |
| cosine_recall@3 | 0.9407 |
| cosine_recall@5 | 0.9576 |
| cosine_recall@10 | 0.9619 |
| cosine_ndcg@10 | 0.915 |
| cosine_mrr@10 | 0.899 |
| **cosine_map@100** | **0.8999** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8517 |
| cosine_accuracy@3 | 0.9449 |
| cosine_accuracy@5 | 0.9555 |
| cosine_accuracy@10 | 0.9597 |
| cosine_precision@1 | 0.8517 |
| cosine_precision@3 | 0.315 |
| cosine_precision@5 | 0.1911 |
| cosine_precision@10 | 0.096 |
| cosine_recall@1 | 0.8517 |
| cosine_recall@3 | 0.9449 |
| cosine_recall@5 | 0.9555 |
| cosine_recall@10 | 0.9597 |
| cosine_ndcg@10 | 0.9136 |
| cosine_mrr@10 | 0.8979 |
| **cosine_map@100** | **0.8991** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.839 |
| cosine_accuracy@3 | 0.9343 |
| cosine_accuracy@5 | 0.947 |
| cosine_accuracy@10 | 0.9597 |
| cosine_precision@1 | 0.839 |
| cosine_precision@3 | 0.3114 |
| cosine_precision@5 | 0.1894 |
| cosine_precision@10 | 0.096 |
| cosine_recall@1 | 0.839 |
| cosine_recall@3 | 0.9343 |
| cosine_recall@5 | 0.947 |
| cosine_recall@10 | 0.9597 |
| cosine_ndcg@10 | 0.9053 |
| cosine_mrr@10 | 0.8873 |
| **cosine_map@100** | **0.888** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8242 |
| cosine_accuracy@3 | 0.911 |
| cosine_accuracy@5 | 0.9322 |
| cosine_accuracy@10 | 0.947 |
| cosine_precision@1 | 0.8242 |
| cosine_precision@3 | 0.3037 |
| cosine_precision@5 | 0.1864 |
| cosine_precision@10 | 0.0947 |
| cosine_recall@1 | 0.8242 |
| cosine_recall@3 | 0.911 |
| cosine_recall@5 | 0.9322 |
| cosine_recall@10 | 0.947 |
| cosine_ndcg@10 | 0.8905 |
| cosine_mrr@10 | 0.8719 |
| **cosine_map@100** | **0.8732** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 103.25 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.94 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|
| <code>Yes, saracatinib is being studied as a treatment against Alzheimer's Disease. A clinical Phase Ib study has been completed, and a clinical Phase IIa study is ongoing.</code> | <code>Was saracatinib being considered as a treatment for Alzheimer's disease in November 2017?</code> |
| <code>TREM2 variants have been found to be associated with early as well as with late onset Alzheimer's disease.</code> | <code>Is TREM2 associated with Alzheimer's disease in humans?</code> |
| <code>Yes, siltuximab , a chimeric human-mouse monoclonal antibody to IL6, is approved for the treatment of patients with multicentric Castleman disease who are human immunodeficiency virus negative and human herpesvirus-8 negative.</code> | <code>Is siltuximab effective for Castleman disease?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| **0.9624** | **8** | **-** | **0.8794** | **0.8937** | **0.9044** | **0.9018** |
| 1.2030 | 10 | 1.1405 | - | - | - | - |
| 1.9248 | 16 | - | 0.8739 | 0.8866 | 0.8998 | 0.8984 |
| 2.4060 | 20 | 0.4328 | - | - | - | - |
| 2.8872 | 24 | - | 0.8732 | 0.8876 | 0.8987 | 0.8998 |
| 3.6090 | 30 | 0.312 | - | - | - | - |
| 3.8496 | 32 | - | 0.8732 | 0.8880 | 0.8991 | 0.8999 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |