--- base_model: meta-llama/Meta-Llama-3.1-8B library_name: peft license: llama3.1 tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-ocr-correction results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: ft_data/alpaca_data.jsonl type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-out hub_model_id: pbevan11/llama-3.1-8b-ocr-correction adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: ocr-ft wandb_entity: sncds wandb_name: llama31 gradient_accumulation_steps: 4 micro_batch_size: 2 # was 16 eval_batch_size: 2 # was 16 num_epochs: 2 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ```

[Visualize in Weights & Biases](https://wandb.ai/sncds/ocr-ft/runs/1bdo6czg) # llama-3.1-8b-ocr-correction This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 49 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6009 | 0.8 | 1 | 0.6584 | | 0.5865 | 1.2 | 2 | 0.6569 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1