pedromatias97
commited on
Commit
•
3fd388c
1
Parent(s):
a02debb
End of training
Browse files
README.md
CHANGED
@@ -22,16 +22,16 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
- Loss: 0.
|
45 |
-
- Accuracy: 0.
|
46 |
-
- Precision: 0.
|
47 |
-
- Recall: 0.
|
48 |
-
- F1: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -73,22 +73,19 @@ The following hyperparameters were used during training:
|
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
- lr_scheduler_warmup_ratio: 0.1
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
-
| 2.
|
83 |
-
| 1.
|
84 |
-
|
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.0759 | 8.0 | 399 | 0.2593 | 0.9198 | 0.9209 | 0.9198 | 0.9190 |
|
90 |
-
| 0.0491 | 8.98 | 448 | 0.2288 | 0.9298 | 0.9292 | 0.9298 | 0.9293 |
|
91 |
-
| 0.0355 | 9.82 | 490 | 0.2392 | 0.9223 | 0.9231 | 0.9223 | 0.9221 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8972431077694235
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8989153352434833
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8972431077694235
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8974179462177999
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.3892
|
45 |
+
- Accuracy: 0.8972
|
46 |
+
- Precision: 0.8989
|
47 |
+
- Recall: 0.8972
|
48 |
+
- F1: 0.8974
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
- lr_scheduler_warmup_ratio: 0.1
|
76 |
+
- num_epochs: 7
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
+
| 2.2319 | 0.98 | 49 | 1.5808 | 0.5263 | 0.5682 | 0.5263 | 0.4767 |
|
83 |
+
| 1.2682 | 1.98 | 99 | 0.9750 | 0.7556 | 0.7524 | 0.7556 | 0.7510 |
|
84 |
+
| 0.9462 | 2.99 | 149 | 0.7403 | 0.7945 | 0.7964 | 0.7945 | 0.7921 |
|
85 |
+
| 0.5946 | 3.99 | 199 | 0.5921 | 0.8233 | 0.8281 | 0.8233 | 0.8214 |
|
86 |
+
| 0.4095 | 4.99 | 249 | 0.4772 | 0.8634 | 0.8663 | 0.8634 | 0.8638 |
|
87 |
+
| 0.3349 | 5.99 | 299 | 0.4167 | 0.8835 | 0.8866 | 0.8835 | 0.8841 |
|
88 |
+
| 0.2427 | 6.88 | 343 | 0.3892 | 0.8972 | 0.8989 | 0.8972 | 0.8974 |
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
### Framework versions
|