pedromatias97 commited on
Commit
d311922
1 Parent(s): dcd7c15

End of training

Browse files
Files changed (2) hide show
  1. README.md +99 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - gtzan
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: music-genre-detector-finetuned-gtzan_dset
15
+ results:
16
+ - task:
17
+ name: Audio Classification
18
+ type: audio-classification
19
+ dataset:
20
+ name: GTZAN
21
+ type: gtzan
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9298245614035088
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9292447472185437
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9298245614035088
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9293437948869628
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # music-genre-detector-finetuned-gtzan_dset
41
+
42
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.2288
45
+ - Accuracy: 0.9298
46
+ - Precision: 0.9292
47
+ - Recall: 0.9298
48
+ - F1: 0.9293
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 9e-05
68
+ - train_batch_size: 4
69
+ - eval_batch_size: 4
70
+ - seed: 42
71
+ - gradient_accumulation_steps: 16
72
+ - total_train_batch_size: 64
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - lr_scheduler_warmup_ratio: 0.1
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
82
+ | 2.2522 | 0.98 | 49 | 1.6370 | 0.6090 | 0.6189 | 0.6090 | 0.5764 |
83
+ | 1.2901 | 1.98 | 99 | 0.9974 | 0.7556 | 0.7655 | 0.7556 | 0.7426 |
84
+ | 1.0046 | 2.99 | 149 | 0.6645 | 0.8195 | 0.8226 | 0.8195 | 0.8162 |
85
+ | 0.5952 | 3.99 | 199 | 0.5054 | 0.8459 | 0.8561 | 0.8459 | 0.8460 |
86
+ | 0.3596 | 4.99 | 249 | 0.3729 | 0.9023 | 0.9117 | 0.9023 | 0.9041 |
87
+ | 0.2534 | 5.99 | 299 | 0.2953 | 0.9073 | 0.9088 | 0.9073 | 0.9075 |
88
+ | 0.1413 | 7.0 | 349 | 0.2545 | 0.9223 | 0.9229 | 0.9223 | 0.9216 |
89
+ | 0.0759 | 8.0 | 399 | 0.2593 | 0.9198 | 0.9209 | 0.9198 | 0.9190 |
90
+ | 0.0491 | 8.98 | 448 | 0.2288 | 0.9298 | 0.9292 | 0.9298 | 0.9293 |
91
+ | 0.0355 | 9.82 | 490 | 0.2392 | 0.9223 | 0.9231 | 0.9223 | 0.9221 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.33.1
97
+ - Pytorch 1.10.2+cu111
98
+ - Datasets 2.14.5
99
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e5d0457a4c1d48355d9d773b19e57b2e5dfc403f149a3b73cd30fe54e421f48
3
  size 94782534
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7652bb95ff6119e9dc21e31259c1a7456f498a3550c227e1ff7f5be7b3899e42
3
  size 94782534