File size: 13,693 Bytes
8bbaf56
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7931f82052d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7931f8205360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7931f82053f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7931f8205480>", "_build": "<function ActorCriticPolicy._build at 0x7931f8205510>", "forward": "<function ActorCriticPolicy.forward at 0x7931f82055a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7931f8205630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7931f82056c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7931f8205750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7931f82057e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7931f8205870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7931f8205900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79325be45f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690744296582994853, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMnRT0fRbW53SfYtqLzR7FhNHi7YvYANgAAgD8AAIA/zbjLO3tmi7rtsjA0838Or07mbrrCvoqzAACAPwAAgD+AgJa91wDlPpc8yj0ciq++Gh42vR4ijrwAAAAAAAAAAGaKwbuQO94+lNCtvLyAur4eZti9YH0CvgAAAAAAAAAAZnNnPh2wFD86pf69fbTRvhuWhD66+2O+AAAAAAAAAABmric84dqjuCvqaDYjDNAxG15Kuiz7jLUAAIA/AACAPzM+/D2f8s08ojz6vRUNeb77JZu8xB4tvQAAAAAAAAAADR/9vSySbj4lJGY+Q12XvnahD73FwK48AAAAAAAAAAAAZ7q8j6+2P/L/Db/vSBE+4LdLPD5SA7wAAAAAAAAAAIDvWT3x8HA8Z18rvTqVZ76rABE7ng5yvQAAAAAAAAAAM7DZPOEX5z6gj1k8kEewvkFfdTsN31a7AAAAAAAAAADDHIM+h3RuP5Z+vT5GAfW+DFjtPlJmDT4AAAAAAAAAAKbYtj1sFp4+BI6pvbTWq76XWPW7uhWquwAAAAAAAAAAE0k2PoB3oz9SA/c+u+IPv6FHpT7W9HE9AAAAAAAAAADNZBs7KTExvG+gIj3W06g8aOqSvVdOij0AAIA/AACAP83sL7pdabM/qj6LvS7h0r5QoU06C1R8PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGrWFBY3eiMAWyUS+yMAXSUR0CSeEoXbdrPdX2UKGgGR0Bxvm3PRiPRaAdL7GgIR0CSecm3OObRdX2UKGgGR0BysDA8B+4LaAdNKwFoCEdAknriMYMvy3V9lChoBkdAcASeoDPnjmgHTRsBaAhHQJJ7scABDG91fZQoaAZHQHFruIInjQ1oB00nAWgIR0CSe/GVAzHkdX2UKGgGR0BzO8P9UCJXaAdNBQFoCEdAknv5QDV6NXV9lChoBkdAcsaAgPmPo2gHS+toCEdAknv62SdOI3V9lChoBkdAci2Km8/Uv2gHTTUBaAhHQJJ9pWyTpxF1fZQoaAZHQHKCwSnLq2VoB0viaAhHQJJ9teZ5Rj11fZQoaAZHQHAiw6ySmqJoB0vwaAhHQJJ9tF5OafB1fZQoaAZHQG/2uR1X/5toB00wAWgIR0CSfdRBNVR2dX2UKGgGR0Bw8H3YcvM9aAdL6mgIR0CSfd8c+7lJdX2UKGgGR0BwwwZ3s5XEaAdL6mgIR0CSfkt65XlsdX2UKGgGR0Byry6Zpi7TaAdL62gIR0CSfkx4ptrLdX2UKGgGR0BzPIEnssxxaAdL9mgIR0CSfnHMEA5rdX2UKGgGR0BwqZMDfWMCaAdNGgFoCEdAkoGug6EJ0HV9lChoBkdAc4OvsJIDo2gHS/loCEdAkoJ9dVvMr3V9lChoBkdAcdCtTDO1OWgHS+hoCEdAkoKjYNAkcHV9lChoBkdAcipSCOFQEmgHS99oCEdAkoKixzJZGXV9lChoBkdAcZYR15jYqWgHS+loCEdAkoLqiCaqj3V9lChoBkdAcUlRsdkrgGgHTSgBaAhHQJKDRQzk6tF1fZQoaAZHQHKXTlDF6zFoB00SAWgIR0CShD09QoCudX2UKGgGR0BxD9SgoPTYaAdL4mgIR0CShGb1yvLYdX2UKGgGR0BzaOMkyDZlaAdN5gFoCEdAkoSSjgydnXV9lChoBkdAb03zCk43m2gHS/toCEdAkoUmdupCKXV9lChoBkdAbbYhwl0HQmgHTQkBaAhHQJKFoTdtVJd1fZQoaAZHQHDxv4yoGY9oB00LAWgIR0CShc1Z1V5sdX2UKGgGR0Byi+cYqG1yaAdNBQFoCEdAkoYiLVFx43V9lChoBkdAb3V+8XenAWgHTQcBaAhHQJKGWfapPyl1fZQoaAZHQHI8F1KXfIloB00aAWgIR0CShqqXWvr4dX2UKGgGR0B0Jep2ll9SaAdNMQFoCEdAkobYiosI3XV9lChoBkdASq8Aq/dqL2gHS8VoCEdAkoh5zHS4OXV9lChoBkdAcHbXwsoUjGgHS+JoCEdAkoj/l+3H73V9lChoBkdAcrnCkoF3ZGgHS/toCEdAkokSmIj4YnV9lChoBkdAccjwLE1l5GgHS/ZoCEdAkomr39JjD3V9lChoBkdAc3eH2ys0YWgHS9doCEdAkopAl4TsY3V9lChoBkdAcbwRChN/OWgHS/loCEdAkopfZmI0qHV9lChoBkdAchvcKPXCj2gHTSoBaAhHQJKLLwBo24x1fZQoaAZHQHMXl5rxiG5oB0v7aAhHQJKb7TUiILx1fZQoaAZHQHDfOkpI+W5oB0v7aAhHQJKcgnKGL1p1fZQoaAZHQHHY6Wom5UdoB0v+aAhHQJKdH+MqBmR1fZQoaAZHQE0UntOVPepoB0uJaAhHQJKdd+ocaOx1fZQoaAZHQFHEm9xp+MJoB0veaAhHQJKdlun/DLt1fZQoaAZHQHFSkKmbb11oB0v6aAhHQJKd2sMiKSB1fZQoaAZHQHF/965XlsBoB00HAWgIR0CSngEsrd30dX2UKGgGR0Bx2d4nndO7aAdNHgFoCEdAkp5YMSbpeXV9lChoBkdAbhtvxYq5LGgHTRoBaAhHQJKfJZU1hst1fZQoaAZHQHEYBvvSc9ZoB01qAWgIR0CSnzZydWhidX2UKGgGR0BxfufZmI0qaAdL9GgIR0CSodJ8OTaCdX2UKGgGR0ByugzBRAKOaAdNRwFoCEdAkqKR3aBZp3V9lChoBkdAcJ0moR7JGWgHTQABaAhHQJKjQK9f1Hx1fZQoaAZHQHJKrKNhmXhoB002AWgIR0CSo1YVZcLSdX2UKGgGR0Bw3ABRyfcvaAdNKAFoCEdAkqO++yquKXV9lChoBkdAcppjslb/wWgHTWMBaAhHQJKkY+Ofdyl1fZQoaAZHQHDbU5p8F6loB0vtaAhHQJKkq6WgOBl1fZQoaAZHQHKZE0aZQYVoB0vkaAhHQJKlgeuFHrh1fZQoaAZHQHBAJs0pEx9oB00mAWgIR0CSpZ16Vt4zdX2UKGgGR0By+lB/qgRLaAdL9mgIR0CSpbRRuTA4dX2UKGgGR0BtekFnqVyFaAdNQwFoCEdAkqex4Y77sXV9lChoBkdAcVAVS4vvjWgHS/ZoCEdAkqgX5eqrBHV9lChoBkdAcK9sUZeiSWgHTS4BaAhHQJKoFYvFm4B1fZQoaAZHQG73ETg2qDNoB01CAWgIR0CSqV7FbVz7dX2UKGgGR0BxQVcry1/laAdNPwFoCEdAkqnxusLfDXV9lChoBkdAceVO1v2oN2gHS+ZoCEdAkqyBzmwJPnV9lChoBkdAcWXMr3CbdGgHTQoBaAhHQJKtLUnXumd1fZQoaAZHQG34RuTA31loB0v2aAhHQJKujQdCE6F1fZQoaAZHQG3/uFpPAO9oB0v9aAhHQJKvCpbUwzt1fZQoaAZHQG+uPalDWsloB0vhaAhHQJKvIG0NSZV1fZQoaAZHQG3WqJl8PWhoB02aAWgIR0CSr/MI/qxDdX2UKGgGR0ByU+Dwpe/paAdNDgFoCEdAkrAreQ+2VnV9lChoBkdAcM4gogFHKGgHS+doCEdAkrAq+36RAHV9lChoBkdAcoq0PpY9xWgHS/xoCEdAkrDdsrNGE3V9lChoBkdAccmCWNWEK2gHTU8BaAhHQJKytavA44p1fZQoaAZHQHISuuq3mV9oB00CAWgIR0CSst3V09yMdX2UKGgGR0Bx1V4C6pYLaAdNBgFoCEdAkrMBy8zyjHV9lChoBkdAcQLP0qYqomgHTSwBaAhHQJKz6mGdqcp1fZQoaAZHQHJPSjcmBvtoB0v7aAhHQJK0CGTLW7R1fZQoaAZHQG2gvwuuiexoB013AWgIR0CStNCfHxSYdX2UKGgGR0BwgPnjhky2aAdNOwFoCEdAkrWDhLoOhHV9lChoBkdAcLUmQ8wHq2gHS9poCEdAkrXJydWhiHV9lChoBkdAcGcuZ1FH8WgHTQUBaAhHQJK1/BP9DQZ1fZQoaAZHQHItrXlKbrloB0v9aAhHQJK3JCBwuNB1fZQoaAZHQHBPVP3ztkZoB0vbaAhHQJK3i8oQWep1fZQoaAZHQHDuV49ovi9oB0v/aAhHQJK3t5AyEct1fZQoaAZHQHFR/3BYV7BoB0v6aAhHQJK3xiay8jB1fZQoaAZHQG/vuejEehhoB01LAWgIR0CSuGFw1ivxdX2UKGgGR0BxwwFr2xptaAdNFgFoCEdAkriM98qnWXV9lChoBkdAct2m9xp+MWgHTTQBaAhHQJK4pQFcIJJ1fZQoaAZHQFIMZq20AtFoB0ufaAhHQJK5Uhq0tyx1fZQoaAZHQHAKg/5ckdFoB0vnaAhHQJK5Y+LWI451fZQoaAZHQHHD2FrVOKxoB00cAWgIR0CSuySaVlf7dX2UKGgGR0ByW9IZqEeyaAdNIwFoCEdAkrs5F9a2W3V9lChoBkdAcM690zTF2mgHTQIBaAhHQJK7Xtb9qDd1fZQoaAZHQG/ZG3WnTApoB00eAWgIR0CSvBD1XeWOdX2UKGgGR0BxgSR6nivQaAdL6WgIR0CSvB8ZDRdAdX2UKGgGR0BwcH9qDbrUaAdL72gIR0CSvMW5paicdX2UKGgGR0BxUoaZQYUGaAdNEQFoCEdAkr2XDm8ujHV9lChoBkdAcJ9gm7aqTGgHS9loCEdAkr3XE/B3zXV9lChoBkdAckMG3F1jiGgHS/5oCEdAkr7MjzI3i3V9lChoBkdAcUrO09hZyWgHS/loCEdAkr7eMAFPi3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}