pengsu commited on
Commit
ed19aaa
1 Parent(s): c411eb5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -157
README.md CHANGED
@@ -1,202 +1,133 @@
1
  ---
2
  base_model: google/gemma-2-2b-it
3
  library_name: peft
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
 
 
18
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
 
 
201
 
202
- - PEFT 0.12.0
 
 
 
1
  ---
2
  base_model: google/gemma-2-2b-it
3
  library_name: peft
4
+ tags:
5
+ - sentiment-analysis
6
+ - weighted-loss
7
+ - LoRA
8
+ - Korean
9
  ---
10
 
11
+ # Model Card for Fine-Tuned `gemma-2-2b-it` on Custom Korean Sentiment Dataset
12
 
13
+ ## Model Summary
14
 
15
+ This model is a fine-tuned version of `google/gemma-2-2b-it`, trained to classify sentiment in Korean text into four categories: **무감정** (neutral), **슬픔** (sadness), **기쁨** (joy), and **분노** (anger). The model utilizes **LoRA (Low-Rank Adaptation)** for efficient fine-tuning and **4-bit quantization (NF4)** for memory efficiency using **BitsAndBytes**. A custom weighted loss function was applied to handle class imbalance within the dataset.
16
 
17
+ The model is suitable for multi-class sentiment classification in Korean and is optimized for environments with limited computational resources due to the quantization.
18
 
19
  ## Model Details
20
 
21
+ ### Developed By:
22
+ This model was fine-tuned by [Your Name or Organization] using Hugging Face's `peft` and `transformers` libraries with a custom Korean sentiment dataset.
23
 
24
+ ### Model Type:
25
+ This is a transformer-based model for **multi-class sentiment classification** in the Korean language.
26
 
27
+ ### Language:
28
+ - **Language(s)**: Korean
29
 
30
+ ### License:
31
+ [Add relevant license here]
32
 
33
+ ### Finetuned From:
34
+ - **Base Model**: `google/gemma-2-2b-it`
 
 
 
 
 
35
 
36
+ ### Framework Versions:
37
+ - **Transformers**: 4.44.2
38
+ - **PEFT**: 0.12.0
39
+ - **Datasets**: 3.0.1
40
+ - **PyTorch**: 2.4.1+cu121
41
 
42
+ ## Intended Uses & Limitations
43
 
44
+ ### Intended Use:
45
+ This model is suitable for applications requiring multi-class sentiment classification in Korean, such as chatbots, social media monitoring, or customer feedback analysis.
 
46
 
47
+ ### Out-of-Scope Use:
48
+ The model may not perform optimally for tasks requiring multi-language support, sentiment classification with additional classes, or outside the specific context of Korean language data.
49
 
50
+ ### Limitations:
51
+ - **Bias**: As the model is trained on a custom dataset, it may reflect specific biases inherent in that data.
52
+ - **Generalization**: Performance may vary when applied to datasets outside the scope of the initial training data, such as other forms of sentiment classification.
53
 
54
+ ## Model Architecture
55
 
56
+ ### Quantization:
57
+ The model uses **4-bit quantization** via **BitsAndBytes** for efficient memory usage, which enables it to run on lower-resource hardware.
58
 
59
+ ### LoRA Configuration:
60
+ LoRA (Low-Rank Adaptation) was applied to specific transformer layers, allowing for parameter-efficient fine-tuning. The target modules include:
61
+ - `down_proj`, `gate_proj`, `q_proj`, `o_proj`, `up_proj`, `v_proj`, `k_proj`
62
 
63
+ LoRA parameters are:
64
+ - `r = 16`, `lora_alpha = 32`, `lora_dropout = 0.05`
65
 
66
+ ### Custom Weighted Loss:
67
+ A custom weighted loss function was implemented to handle class imbalance, using the following weights:
68
 
69
+ \[
70
+ \text{weights} = [0.2032, 0.2704, 0.2529, 0.2735]
71
+ \]
72
 
73
+ These weights correspond to the classes: **무감정**, **슬픔**, **기쁨**, **분노**, respectively.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  ## Training Details
76
 
77
+ ### Dataset:
78
+ The model was trained on a custom Korean sentiment analysis dataset. This dataset consists of text samples labeled with one of four sentiment classes: **무감정**, **슬픔**, **기쁨**, and **분노**.
 
 
 
 
 
 
 
79
 
80
+ - **Train Set Size**: Custom dataset
81
+ - **Test Set Size**: Custom dataset
82
+ - **Classes**: 4 (무감정, 슬픔, 기쁨, 분노)
83
 
84
+ ### Preprocessing:
85
+ Data was tokenized using the `google/gemma-2-2b-it` tokenizer with a maximum sequence length of 128. The preprocessing steps included padding and truncation to ensure consistent input lengths.
86
 
87
+ ### Hyperparameters:
88
 
89
+ - **Learning Rate**: 2e-4
90
+ - **Batch Size (train)**: 8
91
+ - **Batch Size (eval)**: 8
92
+ - **Epochs**: 4
93
+ - **Optimizer**: AdamW (with 8-bit optimization)
94
+ - **Weight Decay**: 0.01
95
+ - **Gradient Accumulation Steps**: 2
96
+ - **Evaluation Steps**: 500
97
+ - **Logging Steps**: 500
98
+ - **Metric for Best Model**: F1 (weighted)
99
 
100
  ## Evaluation
101
 
102
+ ### Metrics:
103
+ The model was evaluated using the following metrics:
104
+ - **Accuracy**
105
+ - **F1 Score** (weighted)
106
+ - **Precision** (weighted)
107
+ - **Recall** (weighted)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ The evaluation provides a detailed view of the model's performance across multiple metrics, which helps in understanding its strengths and areas for improvement.
110
 
111
+ ### Code Example:
112
 
113
+ You can load the fine-tuned model and use it for inference on your own data as follows:
114
 
115
+ ```python
116
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
117
 
118
+ # Load model and tokenizer
119
+ model = AutoModelForSequenceClassification.from_pretrained("your-model-directory")
120
+ tokenizer = AutoTokenizer.from_pretrained("your-model-directory")
121
 
122
+ # Tokenize input text
123
+ text = "이 영화는 정말 슬퍼요."
124
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
125
 
126
+ # Get predictions
127
+ outputs = model(**inputs)
128
+ logits = outputs.logits
129
+ predicted_class = logits.argmax(-1).item()
130
 
131
+ # Map prediction to label
132
+ id2label = {0: "무감정", 1: "슬픔", 2: "기쁨", 3: "분노"}
133
+ print(f"Predicted sentiment: {id2label[predicted_class]}")