pere commited on
Commit
055d439
·
1 Parent(s): 3b63515

some new t4 stuff

Browse files
__pycache__/tasks_v4.cpython-38.pyc ADDED
Binary file (1.89 kB). View file
 
finetune_large_mt5_sentencefix_v4.gin ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __gin__ import dynamic_registration
2
+ import tasks_v4
3
+
4
+ import __main__ as train_script
5
+ from t5.data import mixtures
6
+ from t5x import models
7
+ from t5x import partitioning
8
+ from t5x import utils
9
+
10
+ include "t5x/examples/t5/mt5/small.gin"
11
+ include "t5x/configs/runs/finetune.gin"
12
+
13
+ MIXTURE_OR_TASK_NAME = "sentencefix"
14
+ TASK_FEATURE_LENGTHS = {"inputs": 256, "targets": 256}
15
+ TRAIN_STEPS = 1_100_000 # 1000000 pre-trained steps + 20000 fine-tuning steps.
16
+ USE_CACHED_TASKS = False
17
+ DROPOUT_RATE = 0.0
18
+ RANDOM_SEED = 0
19
+
20
+ # `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
21
+ # using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
22
+ # set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
23
+ # `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
24
+ #LOSS_NORMALIZING_FACTOR = 234496
25
+ INITIAL_CHECKPOINT_PATH = "gs://t5-data/pretrained_models/t5x/mt5_large/checkpoint_1000000"
26
+
27
+ train_script.train:
28
+ eval_period = 500
29
+ partitioner = @partitioning.ModelBasedPjitPartitioner()
30
+
31
+ # `num_decodes` is equivalent to a beam size in a beam search decoding.
32
+ models.EncoderDecoderModel.predict_batch_with_aux.num_decodes = 4
33
+
34
+ partitioning.ModelBasedPjitPartitioner.num_partitions = 2
35
+
36
+
37
+ #from t5.models import mesh_transformer
38
+ #import t5.models
39
+ #mesh_transformer.learning_rate_schedules.constant_learning_rate.learning_rate = 0.0005
40
+ #run.learning_rate_schedule = @learning_rate_schedules.constant_learning_rate
41
+
finetune_mt5_sentencefix_v4.gin CHANGED
@@ -1,5 +1,5 @@
1
  from __gin__ import dynamic_registration
2
- import tasksv4
3
 
4
  import __main__ as train_script
5
  from t5.data import mixtures
 
1
  from __gin__ import dynamic_registration
2
+ import tasks_v4
3
 
4
  import __main__ as train_script
5
  from t5.data import mixtures
finetune_small_mt5_sentencefix_v4.gin ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __gin__ import dynamic_registration
2
+ import tasks_v4
3
+
4
+ import __main__ as train_script
5
+ from t5.data import mixtures
6
+ from t5x import models
7
+ from t5x import partitioning
8
+ from t5x import utils
9
+
10
+ include "t5x/examples/t5/mt5/small.gin"
11
+ include "t5x/configs/runs/finetune.gin"
12
+
13
+ MIXTURE_OR_TASK_NAME = "sentencefix"
14
+ TASK_FEATURE_LENGTHS = {"inputs": 256, "targets": 256}
15
+ TRAIN_STEPS = 1_100_000 # 1000000 pre-trained steps + 20000 fine-tuning steps.
16
+ USE_CACHED_TASKS = False
17
+ DROPOUT_RATE = 0.0
18
+ RANDOM_SEED = 0
19
+
20
+ # `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
21
+ # using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
22
+ # set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
23
+ # `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
24
+ #LOSS_NORMALIZING_FACTOR = 234496
25
+ INITIAL_CHECKPOINT_PATH = "gs://t5-data/pretrained_models/t5x/mt5_small/checkpoint_1000000"
26
+
27
+ train_script.train:
28
+ eval_period = 500
29
+ partitioner = @partitioning.ModelBasedPjitPartitioner()
30
+
31
+ # `num_decodes` is equivalent to a beam size in a beam search decoding.
32
+ models.EncoderDecoderModel.predict_batch_with_aux.num_decodes = 4
33
+
34
+ partitioning.ModelBasedPjitPartitioner.num_partitions = 2
35
+
36
+
37
+ #from t5.models import mesh_transformer
38
+ #import t5.models
39
+ #mesh_transformer.learning_rate_schedules.constant_learning_rate.learning_rate = 0.0005
40
+ #run.learning_rate_schedule = @learning_rate_schedules.constant_learning_rate
41
+
tasksv4.py → tasks_v4.py RENAMED
File without changes