File size: 24,344 Bytes
864d4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Whisper JAX pipeline compatible with Distil Whisper checkpoints. Copied from https://github.com/sanchit-gandhi/whisper-jax/blob/main/whisper_jax/pipeline.py"""
import math
import jax
import jax.numpy as jnp
import numpy as np
import requests
import torch
from flax import jax_utils
from flax.core.frozen_dict import freeze
from flax.training.common_utils import shard
from transformers import WhisperFeatureExtractor, WhisperTokenizerFast
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.utils import logging
from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration
logger = logging.get_logger(__name__)
class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
in transformers, and matches to within 1e-5 abs tolerance.
"""
waveform = torch.from_numpy(waveform).type(torch.float32)
window = torch.hann_window(self.n_fft)
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec.numpy()
class FlaxWhisperPipeline:
def __init__(
self,
checkpoint="openai/whisper-large-v2",
dtype=jnp.float32,
batch_size=None,
max_length=None,
**kwargs,
):
"""
Args
checkpoint (`str`, *optional*, defaults to `"openai/whisper-large-v2"):
The Whisper checkpoint to use with the pipeline. Must be an available checkpoint on the Hugging Face Hub
with Flax weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs). This can be used to enable half-precision inference on GPUs or TPUs.
If specified all the computation will be performed with the given `dtype`. **Note that this only
specifies the dtype of the computation and does not influence the dtype of model parameters.**
batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`):
The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing
a batch size in the `__init__` method will be superseded by any batch size passed to the `__call__` method.
max_length (`int`, *optional*):
The maximum numbers of tokens to generate. Defaults to `model.config.max_length`.
"""
self.checkpoint = checkpoint
self.dtype = dtype
self.feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(self.checkpoint)
self.tokenizer = WhisperTokenizerFast.from_pretrained(self.checkpoint)
self.model, self.params = FlaxWhisperForConditionalGeneration.from_pretrained(
self.checkpoint,
_do_init=False,
dtype=self.dtype,
**kwargs,
)
self.max_length = max_length if max_length is not None else self.model.generation_config.max_length
self.min_batch_size = jax.local_device_count()
self.batch_size = (
batch_size if batch_size is not None else self.min_batch_size
) # we need a minimum of 1 batch per-device
def generate(
params,
input_features,
forced_decoder_ids,
return_timestamps,
num_beams,
length_penalty,
do_sample,
top_k,
temperature,
):
output_ids = self.model.pipeline_generate(
input_features,
params=params,
forced_decoder_ids=forced_decoder_ids,
return_timestamps=return_timestamps,
max_length=self.max_length,
num_beams=num_beams,
length_penalty=length_penalty,
do_sample=do_sample,
top_k=top_k,
temperature=temperature,
)
return output_ids
self.params = jax_utils.replicate(self.params)
self.p_generate = jax.pmap(
generate,
"input_features",
in_axes=(0, 0, None, None, None, None, None, None, None),
static_broadcasted_argnums=(
3,
4,
5,
6,
7,
8,
),
)
def generate(
self,
input_features,
language=None,
task=None,
return_timestamps=False,
num_beams=1,
length_penalty=1.0,
do_sample=False,
top_k=50,
temperature=1.0,
):
forced_decoder_ids = self.get_forced_decoder_ids(
language=language, task=task, return_timestamps=return_timestamps
)
# if we're using pmap we need to manually replicate the input data across devices and gather the output tokens
output_ids = self.p_generate(
freeze(self.params),
shard(input_features),
forced_decoder_ids,
return_timestamps,
num_beams,
length_penalty,
do_sample,
top_k,
temperature,
).sequences
output_ids = jax.device_get(output_ids.reshape(-1, self.max_length))
return output_ids
def get_forced_decoder_ids(self, generation_config=None, task=None, language=None, return_timestamps=False):
if generation_config is None:
generation_config = self.model.generation_config
if hasattr(generation_config, "is_multilingual"):
is_multilingual = generation_config.is_multilingual
else:
is_multilingual = None
forced_decoder_ids = []
if is_multilingual:
if language is not None:
language = language.lower()
if language in generation_config.lang_to_id.keys():
language_token = language
elif language in TO_LANGUAGE_CODE.values():
language_token = f"<|{language}|>"
elif language in TO_LANGUAGE_CODE.keys():
language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
else:
if len(language) == 2:
# ISO 639-1 language code
acceptable_languages = list(TO_LANGUAGE_CODE.values())
elif "<" in language or "|" in language or ">" in language:
# generation config language code
acceptable_languages = list(generation_config.lang_to_id.keys())
else:
# language passed as a string
acceptable_languages = list(TO_LANGUAGE_CODE.keys())
raise ValueError(
f"Unsupported language: {language}. Language should be one of:" f" {acceptable_languages}."
)
forced_decoder_ids.append((1, generation_config.lang_to_id[language_token]))
if task is not None:
forced_decoder_ids.append((2, generation_config.task_to_id[task]))
else:
forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"]))
if not return_timestamps:
if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id:
idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))
else:
forced_decoder_ids.append((1, generation_config.no_timestamps_token_id))
return forced_decoder_ids
def chunk_iter_with_batch(self, inputs, chunk_len, stride_left, stride_right, batch_size):
inputs_len = inputs.shape[0]
step = chunk_len - stride_left - stride_right
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / batch_size)
batch_idx = np.array_split(np.arange(num_samples), num_batches)
for idx in batch_idx:
chunk_start_idx = all_chunk_start_idx[idx]
chunk_end_idx = chunk_start_idx + chunk_len
chunks = [inputs[chunk_start:chunk_end] for chunk_start, chunk_end in zip(chunk_start_idx, chunk_end_idx)]
processed = self.feature_extractor(
chunks, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np"
)
_stride_left = np.where(chunk_start_idx == 0, 0, stride_left)
is_last = np.where(stride_right > 0, chunk_end_idx > inputs_len, chunk_end_idx >= inputs_len)
_stride_right = np.where(is_last, 0, stride_right)
chunk_lens = [chunk.shape[0] for chunk in chunks]
strides = [
(chunk_l, _stride_l, _stride_r)
for chunk_l, _stride_l, _stride_r in zip(chunk_lens, _stride_left, _stride_right)
]
yield {"stride": strides, **processed}
def preprocess_batch(self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None):
if isinstance(inputs, np.ndarray):
logger.warning(
"Numpy array passed as input - no sampling rate checks will be performed."
"It is strongly recommended to pass the input as a dictionary with an 'array' key "
"containing the numpy array representing the audio, and a 'sampling_rate' key "
"containing the sampling rate associated with the audio array."
"Failing to do so can result in silent errors that might be hard to debug."
)
if isinstance(inputs, str):
if inputs.startswith("http://") or inputs.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(inputs).content
else:
with open(inputs, "rb") as f:
inputs = f.read()
if isinstance(inputs, bytes):
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
stride = None
if isinstance(inputs, dict):
stride = inputs.get("stride", None)
# Accepting `"array"` which is the key defined in `datasets` for
# better integration
if not ("sampling_rate" in inputs and "array" in inputs):
raise ValueError(
"When passing a dictionary to FlaxWhisperPipline, the dict needs to contain an 'array' key "
"containing the numpy array representing the audio, and a 'sampling_rate' key "
"containing the sampling rate associated with the audio array."
)
in_sampling_rate = inputs.get("sampling_rate")
inputs = inputs.get("array", None)
if in_sampling_rate != self.feature_extractor.sampling_rate:
try:
import librosa
except ImportError as err:
raise ImportError(
"To support resampling audio files, please install 'librosa' and 'soundfile'."
) from err
inputs = librosa.resample(
inputs, orig_sr=in_sampling_rate, target_sr=self.feature_extractor.sampling_rate
)
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
else:
ratio = 1
if not isinstance(inputs, np.ndarray):
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
if stride is not None:
if stride[0] + stride[1] > inputs.shape[0]:
raise ValueError("Stride is too large for input")
# Stride needs to get the chunk length here, it's going to get
# swallowed by the `feature_extractor` later, and then batching
# can add extra data in the inputs, so we need to keep track
# of the original length in the stride so we can cut properly.
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
if chunk_length_s:
if stride_length_s is None:
stride_length_s = chunk_length_s / 6
if isinstance(stride_length_s, (int, float)):
stride_length_s = [stride_length_s, stride_length_s]
chunk_len = round(chunk_length_s * self.feature_extractor.sampling_rate)
stride_left = round(stride_length_s[0] * self.feature_extractor.sampling_rate)
stride_right = round(stride_length_s[1] * self.feature_extractor.sampling_rate)
if chunk_len < stride_left + stride_right:
raise ValueError("Chunk length must be superior to stride length")
for item in self.chunk_iter_with_batch(
inputs,
chunk_len,
stride_left,
stride_right,
batch_size,
):
yield item
else:
processed = self.feature_extractor(
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np"
)
if stride is not None:
processed["stride"] = stride
yield processed
def postprocess(self, model_outputs, return_timestamps=None, return_language=None):
# unpack the outputs from list(dict(list)) to list(dict)
model_outputs = [dict(zip(output, t)) for output in model_outputs for t in zip(*output.values())]
time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions
# Send the chunking back to seconds, it's easier to handle in whisper
sampling_rate = self.feature_extractor.sampling_rate
for output in model_outputs:
if "stride" in output:
chunk_len, stride_left, stride_right = output["stride"]
# Go back in seconds
chunk_len /= sampling_rate
stride_left /= sampling_rate
stride_right /= sampling_rate
output["stride"] = chunk_len, stride_left, stride_right
text, optional = self.tokenizer._decode_asr(
model_outputs,
return_timestamps=return_timestamps,
return_language=return_language,
time_precision=time_precision,
)
return {"text": text, **optional}
def forward(
self,
model_inputs,
batch_size=None,
language=None,
task=None,
return_timestamps=False,
num_beams=1,
length_penalty=1.0,
do_sample=False,
top_k=50,
temperature=1.0,
):
# We need to keep track of some additional input arguments for post-processing so need to forward these on after running generation
input_features = model_inputs.pop("input_features")
input_batch_size = input_features.shape[0]
if input_batch_size != batch_size:
padding = np.zeros([batch_size - input_batch_size, *input_features.shape[1:]], input_features.dtype)
input_features = np.concatenate([input_features, padding])
pred_ids = self.generate(
input_features,
language=language,
task=task,
return_timestamps=return_timestamps,
num_beams=num_beams,
length_penalty=length_penalty,
do_sample=do_sample,
top_k=top_k,
temperature=temperature,
)[:input_batch_size]
# tokenizer's decode method expects an extra dim - we insert it here for convenience
out = {"tokens": pred_ids[:, None, :]}
stride = model_inputs.pop("stride", None)
if stride is not None:
out["stride"] = stride
return out
def __call__(
self,
inputs,
chunk_length_s=30.0,
stride_length_s=None,
batch_size=None,
language=None,
task=None,
return_timestamps=None,
num_beams=1,
length_penalty=1.0,
do_sample=False,
top_k=50,
temperature=1.0,
):
"""
Transcribe an audio input sequence to a text transcription, optionally with timestamps.
Args:
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
The inputs is either:
- `str` that is the filename of the audio file, the file will be read at the correct sampling rate
to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
- `bytes` is the byte content of an audio file and is interpreted by *ffmpeg* in the
same way.
- (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
Raw audio assumed to be at the correct sampling rate (16kHz). Note that no further sampling
rate check will be done.
- `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "array":
np.array}`. Optionally an additional argument `"stride": (left: int, right: int)` can be used to
ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in
decoding (but used at inference to provide more context to the model). In general, this additional
stride argument is not required.
chunk_length_s (`float`, *optional*, defaults to 30.0):
The input length for each chunk. If `chunk_length_s = 0` then chunking is disabled. By default, the chunk
length is set 30.0s, equal to Whisper's context window.
stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`):
The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables
the model to *see* more context and infer letters better than without this context but the pipeline
discards the stride bits at the end to make the final reconstitution as perfect as possible.
<Tip>
For more information on how to effectively use `stride_length_s`, refer to the [ASR chunking
blog post](https://huggingface.co/blog/asr-chunking).
</Tip>
batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`):
The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing
a batch size in the `__call__` method will supersede any batch size passed to the `__init__`.
task (`str`, *optional*):
Task to use for generation, either `"transcribe"` or `"translate"`. Defaults to `"transcribe"`.
language (`str`, *optional*):
Language token to use for generation, can be either in the form of `"<|en|>"`, `"en"` or `"english"`.
Defaults to `None`, meaning the language is automatically inferred from the audio input.
return_timestamps (*optional*, `bool`):
Whether to return timestamps in the prediction. Defaults to False. If set to true, the pipeline
will return two keys in the output dictionary: `"text"` containing the text transcription, and `"chunks"`
containing the transcription segments chunked by their utterance-level timestamps.
length_penalty (*optional*, `float`):
Exponential penalty to the length that is used with beam-based generation. It is applied as an
exponent to the sequence length, which in turn is used to divide the score of the sequence. Since
the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes
longer sequences, while length_penalty < 1.0 encourages shorter sequences.
do_sample (*optional*, `bool`):
Whether or not to use sampling ; use greedy decoding otherwise.
top_k (*optional*, `int`):
The number of the highest probability vocabulary tokens to keep for top-k-filtering.
temperature (*optional*, `float`):
The value used to modulate the next token probabilities if sampling.
Return:
`Dict`: A dictionary with the following keys:
- **text** (`str` ) -- The recognised text.
- **chunks** (*optional(, `List[Dict]`)
When using `return_timestamps`, the `chunks` will become a list containing all the various text
chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text":
"there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing
`"".join(chunk["text"] for chunk in output["chunks"])`.
"""
batch_size = batch_size if batch_size is not None else self.batch_size
if batch_size % self.min_batch_size != 0:
raise ValueError(
f"Batch size must be a multiple of the number of JAX devices, but got batch size {batch_size} and num devices {self.min_batch_size}."
)
dataloader = self.preprocess_batch(
inputs, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, batch_size=batch_size
)
model_outputs = []
# iterate over our chunked audio samples
for batch in dataloader:
model_outputs.append(
self.forward(
batch,
batch_size=batch_size,
language=language,
task=task,
return_timestamps=return_timestamps,
num_beams=num_beams,
length_penalty=length_penalty,
do_sample=do_sample,
top_k=top_k,
temperature=temperature,
)
)
post_processed = self.postprocess(model_outputs, return_timestamps=return_timestamps)
return post_processed
|