File size: 1,311 Bytes
7705e19
6a64ddc
7705e19
 
ec35ede
7705e19
 
6a64ddc
d83f447
6a64ddc
7705e19
 
 
 
67b22d8
 
 
 
af7a325
67b22d8
af7a325
67b22d8
af7a325
 
 
 
67b22d8
af7a325
 
67b22d8
 
af7a325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
language: no
license: CC-BY 4.0
tags:
- translation
datasets:
- oscar
widget:
- text: "Dette er en test!"
---
# Norwegian mT5 - Translation Bokmål Nynorsk

## Description

This is a sample reference model.

Here is an example of how to use the model from Python
```python
# Import libraries
from transformers import T5ForConditionalGeneration, AutoTokenizer
model = T5ForConditionalGeneration.from_pretrained('andrek/nb2nn',from_flax=True)
tokenizer = AutoTokenizer.from_pretrained(".") # Or tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")

#Encode the text
text = "Hun vil ikke gi bort sine personlige data."
inputs = tokenizer.encode(text, return_tensors="pt")
outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True)

#Decode and print the result
print(tokenizer.decode(outputs[0]))

```

Or if you like to use the pipeline instead
```python
# Set up the pipeline
from transformers import pipeline, T5ForConditionalGeneration, AutoTokenizer
model = T5ForConditionalGeneration.from_pretrained('andrek/nb2nn')
tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
translator = pipeline("translation", model=model, tokenizer=tokenizer)

# Do the translation
text = "Hun vil ikke gi bort sine personlige data."
print(translator(text, max_length=255))

```python