Update README.md
Browse files
README.md
CHANGED
@@ -26,7 +26,7 @@ Apart from some word-list based engines, there are not any working off-the-shelf
|
|
26 |
## Pretraining a T5-base
|
27 |
There is an [mt5](https://huggingface.co/google/mt5-base) that includes Norwegian. Unfortunately a very small part of this is Nynorsk; there is only around 1GB Nynorsk text in mC4. Despite this, the mt5 also gives a BLEU score above 80. During the project we extracted all available Nynorsk text from the [Norwegian Colossal Corpus](https://github.com/NBAiLab/notram/blob/master/guides/corpus_v2_summary.md) at the National Library of Norway, and matched it (by material type i.e. book, newspapers and so on) with an equal amount of Bokmål. The corpus collection is described [here](https://github.com/NBAiLab/notram/blob/master/guides/nb_nn_balanced_corpus.md) and the total size is 19GB.
|
28 |
|
29 |
-
## Finetuning -
|
30 |
Training for [30] epochs with a learning rate of [7e-4], a batch size of [32] and a max source and target length of [512] fine tuning reached a SACREBLEU score of [87.94] at training and a test score of [**88.16**] after training.
|
31 |
|
32 |
## How to use the model
|
|
|
26 |
## Pretraining a T5-base
|
27 |
There is an [mt5](https://huggingface.co/google/mt5-base) that includes Norwegian. Unfortunately a very small part of this is Nynorsk; there is only around 1GB Nynorsk text in mC4. Despite this, the mt5 also gives a BLEU score above 80. During the project we extracted all available Nynorsk text from the [Norwegian Colossal Corpus](https://github.com/NBAiLab/notram/blob/master/guides/corpus_v2_summary.md) at the National Library of Norway, and matched it (by material type i.e. book, newspapers and so on) with an equal amount of Bokmål. The corpus collection is described [here](https://github.com/NBAiLab/notram/blob/master/guides/nb_nn_balanced_corpus.md) and the total size is 19GB.
|
28 |
|
29 |
+
## Finetuning - BLEU-SCORE 88.16 🎉
|
30 |
Training for [30] epochs with a learning rate of [7e-4], a batch size of [32] and a max source and target length of [512] fine tuning reached a SACREBLEU score of [87.94] at training and a test score of [**88.16**] after training.
|
31 |
|
32 |
## How to use the model
|