pere commited on
Commit
60b7f77
·
1 Parent(s): 2d27b2a

Saving weights and logs of epoch 6

Browse files
.run_translation_t5_flax.py.swp ADDED
Binary file (57.3 kB). View file
 
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67ab6b43f4bacd25ccb5e78e065aa2c118535865f9621645b9f0caad1249e47c
3
+ size 1360
events.out.tfevents.1625766202.t1v-n-55481057-w-0.41473.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625766661.t1v-n-55481057-w-0.42918.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625767718.t1v-n-55481057-w-0.44369.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625767744.t1v-n-55481057-w-0.45667.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625768139.t1v-n-55481057-w-0.47104.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625768463.t1v-n-55481057-w-0.48556.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625769058.t1v-n-55481057-w-0.50006.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625769345.t1v-n-55481057-w-0.51489.3.v2 ADDED
Binary file (32 kB). View file
 
events.out.tfevents.1625769791.t1v-n-55481057-w-0.52973.3.v2 ADDED
Binary file (32 kB). View file
 
events.out.tfevents.1625770347.t1v-n-55481057-w-0.54460.3.v2 ADDED
Binary file (31.9 kB). View file
 
events.out.tfevents.1625770589.t1v-n-55481057-w-0.55856.3.v2 ADDED
Binary file (40 Bytes). View file
 
events.out.tfevents.1625770862.t1v-n-55481057-w-0.57252.3.v2 ADDED
Binary file (31.9 kB). View file
 
events.out.tfevents.1625771104.t1v-n-55481057-w-0.58650.3.v2 ADDED
Binary file (176 kB). View file
 
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69324e2320f6e0c2619bce081b9a703fb4f3dadd403c7b960875a5a8c61d1f39
3
+ size 241981002
run_translation_t5_flax.py CHANGED
@@ -260,8 +260,10 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
260
  for i, val in enumerate(vals):
261
  summary_writer.scalar(tag, val, step - len(vals) + i + 1)
262
 
 
263
  for metric_name, value in eval_metrics.items():
264
- summary_writer.scalar(f"eval_{metric_name}", value, step)
 
265
 
266
 
267
  def create_learning_rate_fn(
@@ -499,7 +501,7 @@ def main():
499
  )
500
 
501
  # Metric
502
- metric = load_metric("bleu")
503
 
504
  def postprocess_text(preds, labels):
505
  preds = [pred.strip() for pred in preds]
@@ -519,14 +521,22 @@ def main():
519
  #Probably not needed for bleu - pere
520
  #decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
521
 
522
- breakpoint()
523
- result = metric.compute(predictions=decoded_preds, references=decoded_labels)
 
 
 
 
 
 
 
 
524
  # Extract a few results from ROUGE
525
- result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
526
 
527
- prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
528
- result["gen_len"] = np.mean(prediction_lens)
529
- result = {k: round(v, 4) for k, v in result.items()}
530
  return result
531
 
532
  # Enable tensorboard only on the master node
 
260
  for i, val in enumerate(vals):
261
  summary_writer.scalar(tag, val, step - len(vals) + i + 1)
262
 
263
+ #Pere - dropping all values that are not float
264
  for metric_name, value in eval_metrics.items():
265
+ if isinstance(value,float):
266
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
267
 
268
 
269
  def create_learning_rate_fn(
 
501
  )
502
 
503
  # Metric
504
+ metric = load_metric("sacrebleu")
505
 
506
  def postprocess_text(preds, labels):
507
  preds = [pred.strip() for pred in preds]
 
521
  #Probably not needed for bleu - pere
522
  #decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
523
 
524
+ #breakpoint()
525
+ #result = metric.compute(predictions=decoded_preds, references=decoded_labels)
526
+ decoded_labels_list = [[d] for d in decoded_labels]
527
+ result = metric.compute(predictions=decoded_preds, references=decoded_labels_list)
528
+
529
+ #Debug stuff - pere
530
+ print("Example translations")
531
+ for i in range(0,5):
532
+ print(f'{decoded_preds[i]} - {decoded_labels_list[i]}')
533
+ #breakpoint()
534
  # Extract a few results from ROUGE
535
+ #result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
536
 
537
+ #prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
538
+ #result["gen_len"] = np.mean(prediction_lens)
539
+ #result = {k: round(v, 4) for k, v in result.items()}
540
  return result
541
 
542
  # Enable tensorboard only on the master node