Saving weights and logs of epoch 60
Browse files
config.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f84d74dd7be6033a337c5857b9bbc37993375140addaf83691e24e181e9d4b5c
|
3 |
+
size 613
|
events.out.tfevents.1625842203.t1v-n-55481057-w-0.84882.3.v2
ADDED
Binary file (465 kB). View file
|
|
events.out.tfevents.1625843263.t1v-n-55481057-w-0.86544.3.v2
ADDED
Binary file (40 Bytes). View file
|
|
events.out.tfevents.1625843608.t1v-n-55481057-w-0.87879.3.v2
ADDED
Binary file (1.74 MB). View file
|
|
flax_model.msgpack
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1200715307
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1672bb6f04da617591d445601d1fa273deedb722149ff324265c8f1ee4ace542
|
3 |
size 1200715307
|
run_translation_t5_flax.py
CHANGED
@@ -430,8 +430,15 @@ def main():
|
|
430 |
|
431 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
432 |
def preprocess_function(examples):
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
inputs = [prefix + inp for inp in inputs]
|
436 |
model_inputs = tokenizer(
|
437 |
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
|
|
|
430 |
|
431 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
432 |
def preprocess_function(examples):
|
433 |
+
#Make it two way
|
434 |
+
#inputs = examples[text_column]
|
435 |
+
inputs = examples[text_column][0:int(len(examples)/2)]
|
436 |
+
inputs.extend(examples[summary_column][int(len(examples)/2):])
|
437 |
+
|
438 |
+
#targets = examples[summary_column]
|
439 |
+
targets = examples[summary_column][0:int(len(examples)/2)]
|
440 |
+
targets.extend(examples[text_column][int(len(examples)/2):])
|
441 |
+
|
442 |
inputs = [prefix + inp for inp in inputs]
|
443 |
model_inputs = tokenizer(
|
444 |
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
|