File size: 10,180 Bytes
0c7f7c8
 
425bc8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7f7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c0258
0c7f7c8
f0c0258
0c7f7c8
f0c0258
0c7f7c8
ead1fec
0c7f7c8
 
 
ead1fec
0b1b934
ead1fec
0c7f7c8
 
 
f0c0258
0c7f7c8
 
 
 
 
e6c501f
 
 
 
 
0c7f7c8
 
 
 
 
 
f747e89
 
 
 
807fd2c
 
0c7f7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425bc8f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
---
license: apache-2.0
model-index:
- name: Chupacabra-7B-v2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.19
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57.17
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 54.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2
      name: Open LLM Leaderboard
---

# Chupacabra 7B v2

<p><img src="https://huggingface.co/perlthoughts/Chupacabra-7B/resolve/main/chupacabra7b%202.png" width=330></p>

### Model Description

This model was made by merging models based on Mistral with the SLERP merge method.

Advantages of SLERP vs averaging weights(common) are as follows:

- Spherical Linear Interpolation (SLERP) - Traditionally, model merging often resorts to weight averaging which, although straightforward, might not always capture the intricate features of the models being merged. The SLERP technique addresses this limitation, producing a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents.

- Smooth Transitions - SLERP ensures smoother transitions between model parameters. This is especially significant when interpolating between high-dimensional vectors.

- Better Preservation of Characteristics - Unlike weight averaging, which might dilute distinct features, SLERP preserves the curvature and characteristics of both models in high-dimensional spaces.

- Nuanced Blending - SLERP takes into account the geometric and rotational properties of the models in the vector space, resulting in a blend that is more reflective of both parent models' characteristics.

List of all models and merging path is coming soon.

## Purpose

Merging the "thick"est model weights from mistral models using amazing training methods like direct preference optimization (DPO), supervised fine tuning (SFT) and reinforced learning.

I have spent countless hours studying the latest research papers, attending conferences, and networking with experts in the field. I experimented with different algorithms, tactics, fine-tuned hyperparameters, optimizers, and optimized code until I achieved the best possible results.

It has not been without challenges. There were skeptics who doubted my abilities and questioned my approach. My approach can be changed, but a closed mind cannot.

I refused to let their negativity bring me down. Instead, I used their doubts as fuel to push myself even harder. I worked tirelessly (vapenation), day and night, until I finally succeeded in merging with the most performant model weights using SOTA training methods like DPO and other advanced techniques described above.

Thank you openchat 3.5 for showing me the way.

```
"Hate it or love it, the underdogs on top." - The Game
```

Here is my contribution.


## Prompt Template

Replace {system} with your system prompt, and {prompt} with your prompt instruction.

```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

### Bug fixes

- Fixed issue with generation and the incorrect model weights. Model weights have been corrected and now generation works again. Reuploading GGUF to the GGUF repository as well as the AWQ versions.

- Fixed issue with tokenizer not stopping correctly and changed prompt template.

- Uploaded new merged model weights.

### More info

- **Developed by:** Ray Hernandez
- **Model type:** Mistral
- **Language(s) (NLP):** English
- **License:** Apache 2.0

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary


## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_perlthoughts__Chupacabra-7B-v2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.04|
|AI2 Reasoning Challenge (25-Shot)|65.19|
|HellaSwag (10-Shot)              |83.39|
|MMLU (5-Shot)                    |63.60|
|TruthfulQA (0-shot)              |57.17|
|Winogrande (5-shot)              |78.14|
|GSM8k (5-shot)                   |54.74|