--- language: - fa - multilingual thumbnail: "https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg" tags: - machine-translation - mt5 - persian - farsi license: "CC BY-NC-SA 4.0" datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (Persian -> English). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-opus-translation_fa_en" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("ستایش خدای را که پروردگار جهانیان است.") run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه می‌کند؛") run_model("وی از تمامی بلاگرها، سازمان‌ها و افرادی که از وی پشتیبانی کرده‌اند، تشکر کرد.") run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ") run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟") ``` which should give the following: ``` ['the admiration of God, which is the Lord of the world.'] ['At the Ford Park, the Crawford Park stands on a vase;'] ['He thanked all the bloggers, the organizations, and the people who supported him'] ['similar to the year 2001, the economy of ammonia in the United States in the'] ['I want to follow the computer experts on social networks, what is the unsolved problem in'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/