File size: 2,161 Bytes
5403db1 e5e9701 5403db1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language:
- fa
- multilingual
thumbnail: "https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg"
tags:
- machine-translation
- mt5
- persian
- farsi
license: "CC BY-NC-SA 4.0"
datasets:
- parsinlu
metrics:
- sacrebleu
---
# Machine Translation (ترجمهی ماشینی)
This is an mT5-based model for machine translation (English -> Persian).
Here is an example of how you can run this model:
```python
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
model_size = "base"
model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
def run_model(input_string, **generator_args):
input_ids = tokenizer.encode(input_string, return_tensors="pt")
res = model.generate(input_ids, **generator_args)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
print(output)
return output
run_model("Praise be to Allah, the Cherisher and Sustainer of the worlds;")
run_model("shrouds herself in white and walks penitentially disguised as brotherly love through factories and parliaments; offers help, but desires power;")
run_model("He thanked all fellow bloggers and organizations that showed support.")
run_model("Races are held between April and December at the Veliefendi Hippodrome near Bakerky, 15 km (9 miles) west of Istanbul.")
run_model("I want to pursue PhD in Computer Science about social network,what is the open problem in social networks?")
```
which should output:
```
['خدا را شکر که عامل خطرناک و محافظ دنیاست.']
['خود را سفید می کند و به شکل برادرانه ای در کارخانه ها و']
['او از تمامی همکاران و سازمان هایی که از او حمایت می کردند تشکر']
['برگزاری مسابقات بین آوریل تا دسامبر در هیپوگریم والی']
['من می خواهم تحصیل دکترای علوم کامپیوتری را در مورد شب']
```
For more details, visit this page: https://github.com/persiannlp/parsinlu/
|