Add new SentenceTransformer model with an onnx backend
Browse files- 1_Pooling/config.json +10 -0
- README.md +297 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- onnx/model.onnx +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
lang:
|
4 |
+
- sv
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
widget:
|
11 |
+
- source_sentence: Mannen åt mat.
|
12 |
+
sentences:
|
13 |
+
- Han förtärde en närande och nyttig måltid.
|
14 |
+
- Det var ett sunkigt hak med ganska gott käk.
|
15 |
+
- Han inmundigade middagen tillsammans med ett glas rödvin.
|
16 |
+
- Potatischips är jättegoda.
|
17 |
+
- Tryck på knappen för att få tala med kundsupporten.
|
18 |
+
example_title: Mat
|
19 |
+
- source_sentence: Kan jag deklarera digitalt från utlandet?
|
20 |
+
sentences:
|
21 |
+
- Du som befinner dig i utlandet kan deklarera digitalt på flera olika sätt.
|
22 |
+
- >-
|
23 |
+
Du som har kvarskatt att betala ska göra en inbetalning till ditt
|
24 |
+
skattekonto.
|
25 |
+
- >-
|
26 |
+
Efter att du har deklarerat går vi igenom uppgifterna i din deklaration och
|
27 |
+
räknar ut din skatt.
|
28 |
+
- >-
|
29 |
+
I din deklaration som du får från oss har vi räknat ut vad du ska betala
|
30 |
+
eller få tillbaka.
|
31 |
+
- Tryck på knappen för att få tala med kundsupporten.
|
32 |
+
example_title: Skatteverket FAQ
|
33 |
+
- source_sentence: Hon kunde göra bakåtvolter.
|
34 |
+
sentences:
|
35 |
+
- Hon var atletisk.
|
36 |
+
- Hon var bra på gymnastik.
|
37 |
+
- Hon var inte atletisk.
|
38 |
+
- Hon var oförmögen att flippa baklänges.
|
39 |
+
example_title: Gymnastik
|
40 |
+
license: apache-2.0
|
41 |
+
language:
|
42 |
+
- sv
|
43 |
+
---
|
44 |
+
|
45 |
+
# KBLab/sentence-bert-swedish-cased
|
46 |
+
|
47 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
|
48 |
+
|
49 |
+
A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/).
|
50 |
+
|
51 |
+
**Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default.
|
52 |
+
|
53 |
+
| Model version | Teacher Model | Max Sequence Length |
|
54 |
+
|---------------|---------|----------|
|
55 |
+
| v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 |
|
56 |
+
| v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 |
|
57 |
+
| v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 |
|
58 |
+
|
59 |
+
<!--- Describe your model here -->
|
60 |
+
|
61 |
+
## Usage (Sentence-Transformers)
|
62 |
+
|
63 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
64 |
+
|
65 |
+
```
|
66 |
+
pip install -U sentence-transformers
|
67 |
+
```
|
68 |
+
|
69 |
+
Then you can use the model like this:
|
70 |
+
|
71 |
+
```python
|
72 |
+
from sentence_transformers import SentenceTransformer
|
73 |
+
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
|
74 |
+
|
75 |
+
model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
|
76 |
+
embeddings = model.encode(sentences)
|
77 |
+
print(embeddings)
|
78 |
+
```
|
79 |
+
|
80 |
+
### Loading an older model version (Sentence-Transformers)
|
81 |
+
|
82 |
+
Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased
|
86 |
+
```
|
87 |
+
|
88 |
+
Then you can load the model by pointing to the local folder where you cloned the model:
|
89 |
+
|
90 |
+
```python
|
91 |
+
from sentence_transformers import SentenceTransformer
|
92 |
+
model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased")
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
## Usage (HuggingFace Transformers)
|
97 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
98 |
+
|
99 |
+
```python
|
100 |
+
from transformers import AutoTokenizer, AutoModel
|
101 |
+
import torch
|
102 |
+
|
103 |
+
|
104 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
105 |
+
def mean_pooling(model_output, attention_mask):
|
106 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
107 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
108 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
109 |
+
|
110 |
+
|
111 |
+
# Sentences we want sentence embeddings for
|
112 |
+
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
|
113 |
+
|
114 |
+
# Load model from HuggingFace Hub
|
115 |
+
# To load an older version, e.g. v1.0, add the argument revision="v1.0"
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
|
117 |
+
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
|
118 |
+
|
119 |
+
# Tokenize sentences
|
120 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
121 |
+
|
122 |
+
# Compute token embeddings
|
123 |
+
with torch.no_grad():
|
124 |
+
model_output = model(**encoded_input)
|
125 |
+
|
126 |
+
# Perform pooling. In this case, max pooling.
|
127 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
128 |
+
|
129 |
+
print("Sentence embeddings:")
|
130 |
+
print(sentence_embeddings)
|
131 |
+
```
|
132 |
+
|
133 |
+
### Loading an older model (Hugginfface Transformers)
|
134 |
+
|
135 |
+
To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code:
|
136 |
+
|
137 |
+
```python
|
138 |
+
AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
|
139 |
+
AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
|
140 |
+
```
|
141 |
+
|
142 |
+
## Evaluation Results
|
143 |
+
|
144 |
+
<!--- Describe how your model was evaluated -->
|
145 |
+
|
146 |
+
The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below.
|
147 |
+
|
148 |
+
| Model version | Pearson | Spearman |
|
149 |
+
|---------------|---------|----------|
|
150 |
+
| v1.0 | 0.9183 | 0.9114 |
|
151 |
+
| v1.1 | 0.9183 | 0.9114 |
|
152 |
+
| v2.0 | **0.9283** | **0.9130** |
|
153 |
+
|
154 |
+
The following code snippet can be used to reproduce the above results:
|
155 |
+
|
156 |
+
```python
|
157 |
+
from sentence_transformers import SentenceTransformer
|
158 |
+
import pandas as pd
|
159 |
+
|
160 |
+
df = pd.read_csv(
|
161 |
+
"sweparaphrase-dev-165.csv",
|
162 |
+
sep="\t",
|
163 |
+
header=None,
|
164 |
+
names=[
|
165 |
+
"original_id",
|
166 |
+
"source",
|
167 |
+
"type",
|
168 |
+
"sentence_swe1",
|
169 |
+
"sentence_swe2",
|
170 |
+
"score",
|
171 |
+
"sentence1",
|
172 |
+
"sentence2",
|
173 |
+
],
|
174 |
+
)
|
175 |
+
|
176 |
+
model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
|
177 |
+
|
178 |
+
sentences1 = df["sentence_swe1"].tolist()
|
179 |
+
sentences2 = df["sentence_swe2"].tolist()
|
180 |
+
|
181 |
+
# Compute embedding for both lists
|
182 |
+
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
|
183 |
+
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
|
184 |
+
|
185 |
+
# Compute cosine similarity after normalizing
|
186 |
+
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
|
187 |
+
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)
|
188 |
+
|
189 |
+
cosine_scores = embeddings1 @ embeddings2.t()
|
190 |
+
sentence_pair_scores = cosine_scores.diag()
|
191 |
+
|
192 |
+
df["model_score"] = sentence_pair_scores.cpu().tolist()
|
193 |
+
print(df[["score", "model_score"]].corr(method="spearman"))
|
194 |
+
print(df[["score", "model_score"]].corr(method="pearson"))
|
195 |
+
```
|
196 |
+
|
197 |
+
### Sweparaphrase v2.0
|
198 |
+
|
199 |
+
In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.
|
200 |
+
|
201 |
+
| Model version | Data split | Pearson | Spearman |
|
202 |
+
|---------------|------------|------------|------------|
|
203 |
+
| v1.0 | train | 0.8355 | 0.8256 |
|
204 |
+
| v1.1 | train | **0.8383** | **0.8302** |
|
205 |
+
| v2.0 | train | 0.8209 | 0.8059 |
|
206 |
+
| v1.0 | dev | 0.8682 | 0.8774 |
|
207 |
+
| v1.1 | dev | **0.8739** | **0.8833** |
|
208 |
+
| v2.0 | dev | 0.8638 | 0.8668 |
|
209 |
+
| v1.0 | test | 0.8356 | 0.8476 |
|
210 |
+
| v1.1 | test | **0.8393** | **0.8550** |
|
211 |
+
| v2.0 | test | 0.8232 | 0.8213 |
|
212 |
+
|
213 |
+
### SweFAQ v2.0
|
214 |
+
|
215 |
+
When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.
|
216 |
+
|
217 |
+
| Model version | Data split | Accuracy |
|
218 |
+
|---------------|------------|------------|
|
219 |
+
| v1.0 | train | 0.5262 |
|
220 |
+
| v1.1 | train | 0.6236 |
|
221 |
+
| v2.0 | train | **0.7106** |
|
222 |
+
| v1.0 | dev | 0.4636 |
|
223 |
+
| v1.1 | dev | 0.5818 |
|
224 |
+
| v2.0 | dev | **0.6727** |
|
225 |
+
| v1.0 | test | 0.4495 |
|
226 |
+
| v1.1 | test | 0.5229 |
|
227 |
+
| v2.0 | test | **0.5871** |
|
228 |
+
|
229 |
+
|
230 |
+
Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
|
231 |
+
|
232 |
+
## Training
|
233 |
+
|
234 |
+
An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
|
235 |
+
|
236 |
+
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.
|
237 |
+
|
238 |
+
The model was trained with the parameters:
|
239 |
+
|
240 |
+
**DataLoader**:
|
241 |
+
|
242 |
+
`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
|
243 |
+
```
|
244 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
245 |
+
```
|
246 |
+
|
247 |
+
**Loss**:
|
248 |
+
|
249 |
+
`sentence_transformers.losses.MSELoss.MSELoss`
|
250 |
+
|
251 |
+
Parameters of the fit()-Method:
|
252 |
+
```
|
253 |
+
{
|
254 |
+
"epochs": 2,
|
255 |
+
"evaluation_steps": 1000,
|
256 |
+
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
|
257 |
+
"max_grad_norm": 1,
|
258 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
259 |
+
"optimizer_params": {
|
260 |
+
"eps": 1e-06,
|
261 |
+
"lr": 8e-06
|
262 |
+
},
|
263 |
+
"scheduler": "WarmupLinear",
|
264 |
+
"steps_per_epoch": null,
|
265 |
+
"warmup_steps": 5000,
|
266 |
+
"weight_decay": 0.01
|
267 |
+
}
|
268 |
+
```
|
269 |
+
|
270 |
+
|
271 |
+
## Full Model Architecture
|
272 |
+
```
|
273 |
+
SentenceTransformer(
|
274 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
|
275 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
276 |
+
)
|
277 |
+
```
|
278 |
+
|
279 |
+
## Citing & Authors
|
280 |
+
|
281 |
+
<!--- Describe where people can find more information -->
|
282 |
+
This model was trained by KBLab, a data lab at the National Library of Sweden.
|
283 |
+
|
284 |
+
You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .
|
285 |
+
|
286 |
+
```
|
287 |
+
@misc{rekathati2021introducing,
|
288 |
+
author = {Rekathati, Faton},
|
289 |
+
title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},
|
290 |
+
url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},
|
291 |
+
year = {2021}
|
292 |
+
}
|
293 |
+
```
|
294 |
+
|
295 |
+
## Acknowledgements
|
296 |
+
|
297 |
+
We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "KBLab/sentence-bert-swedish-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.46.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50325
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.46.2",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af73b6ff7501d183f1ec7d4785595b236de0923faef49caba03ad52c3c007c14
|
3 |
+
size 496679432
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 384,
|
50 |
+
"model_max_length": 384,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": false,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|