--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_cm results: [] --- # bert_cm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4443 - Accuracy: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 132 | 0.2634 | 0.8951 | | No log | 2.0 | 264 | 0.2139 | 0.9195 | | No log | 3.0 | 396 | 0.3145 | 0.9195 | | 0.2227 | 4.0 | 528 | 0.3342 | 0.9286 | | 0.2227 | 5.0 | 660 | 0.3804 | 0.9316 | | 0.2227 | 6.0 | 792 | 0.3942 | 0.9362 | | 0.2227 | 7.0 | 924 | 0.4372 | 0.9195 | | 0.0101 | 8.0 | 1056 | 0.4211 | 0.9255 | | 0.0101 | 9.0 | 1188 | 0.4334 | 0.9240 | | 0.0101 | 10.0 | 1320 | 0.4443 | 0.9210 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1