File size: 5,034 Bytes
b0e4fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import optuna
import torch
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from datasets import load_dataset
from trl import SFTTrainer
import time

# Set random seed for reproducibility
random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)

# Load dataset
dataset = load_dataset("tatsu-lab/alpaca", split="train")


def chatml_format(example):
    """Format the dataset for training, accounting for empty columns."""
    return {
        "instruction": example['instruction'] if 'instruction' in example else " \n",
        "input": example['input'] if 'input' in example else " \n",
        "system": example['system'] if 'system' in example else " \n",
        "output": example['output'] if 'output' in example else " \n",
    }


# Format dataset
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)

# Define the model initialization function
def model_init(trial=None):
    original = False
    params = {}
    if trial is not None:
        n_ahead = 1
        n_ahead_talk = 1
        n_passes = 1
        gumbel_temperature = 1
        use_start_thought_token = True
        use_end_thought_token = True
        include_policy_loss = True
        gumbel_detach = True
        merged_talk_heads = True
        residual_think_head = False
        optimize_lm_head_only_at_start = False

    model_id = "Crystalcareai/Quiet-Star-Custom"
    tokenizer_id = model_id

    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
        max_thoughts=n_ahead + n_ahead_talk + 1,
        merged_talk_heads=merged_talk_heads,
        merged_lm_and_talk_heads=False,
        merged_lm_and_think_heads=True,
        use_concat_talk_head=True,
        use_shallow_think=True,
        use_shallow_talk=False,
        use_complex_think_head=False,
        use_complex_talk_head=True,
        use_weighted_talk_head=True,
        trust_remote_code=True,  
        device_map="auto",
    )

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding="left")
    tokenizer.pad_token_id = tokenizer.eos_token_id

    special_tokens_to_add = []
    if model.use_start_thought_token:
        special_tokens_to_add.append("<|startthought|>")
    if model.use_end_thought_token:
        special_tokens_to_add.append("<|endthought|>")
    if special_tokens_to_add:
        tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
        model.resize_token_embeddings(len(tokenizer))
    model.tokenizer = tokenizer
    for name, module in model.named_modules():
        if "embed" in name:
            print(module, flush=True)
   
    model.gumbel_detach = gumbel_detach
    model.include_policy_loss = include_policy_loss
    model.use_end_thought_token = use_end_thought_token
    model.use_start_thought_token = use_start_thought_token
    model.n_ahead = n_ahead
    model.n_ahead_talk = n_ahead_talk
    model.n_passes = n_passes
    model.residual_think_head = residual_think_head
    model.gumbel_temperature = gumbel_temperature
    model.original_mode = original
    model.config_params = params
    model.run_start = int(time.time())
    model.train()
    return model

# Define the objective function for Optuna
# Define the objective function for Optuna
def objective(trial):
    # Hyperparameters to be optimized
    learning_rate = trial.suggest_float("learning_rate", 1e-07, 1e-06, log=True)
    max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 1.0)
    warmup_steps = trial.suggest_int("warmup_steps", 0, 20)
    gradient_accumulation_steps = trial.suggest_int("gradient_accumulation_steps", 4, 8)
    
    model = model_init(trial)

    training_args = TrainingArguments(
        output_dir="./out",
        num_train_epochs=3,
        max_steps=30,
        per_device_train_batch_size=1,
        logging_steps=1,
        optim="lion_32bit",
        save_strategy="steps",
        save_steps=3000,
        gradient_accumulation_steps=gradient_accumulation_steps,
        learning_rate=learning_rate,
        max_grad_norm=max_grad_norm,
        warmup_steps=warmup_steps,
        lr_scheduler_type="cosine",
        report_to="none"  # Disable reporting to avoid errors related to WandB in this context
    )

    trainer = SFTTrainer(
        args=training_args,
        train_dataset=dataset,
        model=model,
        tokenizer=model.tokenizer,
        max_seq_length=1024,
        dataset_text_field="output",
    )

    # Train the model and get the training loss
    train_result = trainer.train()
    loss = train_result.training_loss

    return loss


# Create a study and optimize
study = optuna.create_study(storage="sqlite:///db.sqlite3") 
study.optimize(objective, n_trials=100)

# Print the best trial
print("Best trial:")
trial = study.best_trial
print(f"  Loss: {trial.value}")
print("  Params: ")
for key, value in trial.params.items():
    print(f"    {key}: {value}")