--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: cese5020-model-answerdotai-ModernBERT-base-32 results: [] --- # cese5020-model-answerdotai-ModernBERT-base-32 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7505 - Accuracy: 0.7990 - F1: 0.7951 - Precision: 0.8105 - Recall: 0.7989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.4107 | 1.0 | 1335 | 1.1899 | 0.6871 | 0.6747 | 0.7345 | 0.6869 | | 0.5218 | 2.0 | 2670 | 0.7745 | 0.7910 | 0.7866 | 0.8070 | 0.7909 | | 0.156 | 3.0 | 4005 | 0.7505 | 0.7990 | 0.7951 | 0.8105 | 0.7989 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0