File size: 2,989 Bytes
1561114
 
 
 
a5a37e8
1561114
2dce64c
 
 
 
a5a37e8
2dce64c
 
 
a5a37e8
2dce64c
 
a5a37e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dce64c
 
 
 
 
 
1561114
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
tags: autotrain
language: en
widget:
- text: I am still waiting on my card?
datasets:
- banking77
model-index:
- name: BERT-Banking77
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: BANKING77
      type: banking77
    metrics:
    - name: Accuracy
      type: accuracy
      value: 91.99
    - name: Macro F1
      type: macro-f1
      value: 91.99
    - name: Weighted F1
      type: weighted-f1
      value: 91.99
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: banking77
      type: banking77
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.922077922077922
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9256326708783564
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.922077922077922
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9256326708783565
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.922077922077922
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.922077922077922
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.922077922077922
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9221617304411865
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.922077922077922
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9221617304411867
      verified: true
    - name: loss
      type: loss
      value: 0.31692808866500854
      verified: true
co2_eq_emissions: 5.632805352029529
---

# Model Trained Using AutoTrain

- Problem type: Multi-class Classification
- Model ID: 940131045
- CO2 Emissions (in grams): 5.632805352029529

## Validation Metrics

- Loss: 0.3392622470855713
- Accuracy: 0.9199410609037328
- Macro F1: 0.9199390885956755
- Micro F1: 0.9199410609037327
- Weighted F1: 0.9198140295005729
- Macro Precision: 0.9235531521509113
- Micro Precision: 0.9199410609037328
- Weighted Precision: 0.9228777883152248
- Macro Recall: 0.919570805773292
- Micro Recall: 0.9199410609037328
- Weighted Recall: 0.9199410609037328


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/philschmid/autotrain-does-it-work-940131045
```

Or Python API:

```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_id = 'philschmid/DistilBERT-Banking77'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier('What is the base of the exchange rates?')
```