File size: 13,711 Bytes
ffbd8b5 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ecfd200ab90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ecfd200ac20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ecfd200acb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ecfd200ad40>", "_build": "<function ActorCriticPolicy._build at 0x7ecfd200add0>", "forward": "<function ActorCriticPolicy.forward at 0x7ecfd200ae60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ecfd200aef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ecfd200af80>", "_predict": "<function ActorCriticPolicy._predict at 0x7ecfd200b010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ecfd200b0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ecfd200b130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ecfd200b1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecfd1fb5140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698403547317829005, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqIuT1csIQ/+lBUPuWSIr9XoKA9yM5XvAAAAAAAAAAAsyozPSQP8D6KfU69FDxfvhixujzWkgu9AAAAAAAAAABAyZ69j2ZSuoEejjl9OJ40zIbEOnY8p7gAAAAAAACAP1OZgD5x/4M/q7IDP0NuDr/NRZs+hs06PAAAAAAAAAAAZuZ8OQE2Pj+EnD+9aiXbvjj7mbsDvBG7AAAAAAAAAACa7vm8UTeCPzNTzb1B4/e+7aggverBTD0AAAAAAAAAAICFLj3+OpU/VhoMPnwRDr8f7IU9v2OLPQAAAAAAAAAAGsL8Pd1QdD7pnoe+mpGivsHR0LzoD7A8AAAAAAAAAABN5JG982Z9P+ZYYr6XLA2/nKh9vT+AGr0AAAAAAAAAAM1Y4zvh2Lq62qw1M9IxPjCROmC5WhW/swAAgD8AAIA/Zp8ivnCovj5a1BA+ZWaAvilvF71C5VM6AAAAAAAAAACA/c49e5qZusI2srdviI2y6U4TOi2zzTYAAAAAAACAP3NKij17Zqy67G05uRv9tTNUdEa5bUl+sQAAAAAAAIA/zcpUvYWzgzzxuCA9BQEBvrVGBzw7RSq9AAAAAAAAAAAAorI8FM63uLTSPTgzBhAzjxdUuuWKYbcAAIA/AACAP9q6472+0s492Hb1PeZxg76mHI+8sK4bvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDxtp22XsyMAWyUTQUBjAF0lEdAkq16curZJ3V9lChoBkdAcRagB91EE2gHTR4BaAhHQJKuaYF7laN1fZQoaAZHQG8PuKfnOjZoB00SAWgIR0CSrsrMTviMdX2UKGgGR0ByQ6vxH5JsaAdL9GgIR0CSryn0kGA1dX2UKGgGR0BxgwTbnHNpaAdL+GgIR0CSr3zlLeyidX2UKGgGR0Bw8T003wTeaAdL8GgIR0CSr81cMVk+dX2UKGgGR0BwFAksz2vjaAdL/mgIR0CSsGW/rSmZdX2UKGgGR0Bv/6XBxgiNaAdL7mgIR0CSsSz+m3vydX2UKGgGR0ByNSHpKSPmaAdNVAFoCEdAkrH3uiN83XV9lChoBkdAcXWYdQwbl2gHTWMBaAhHQJKzgiW3Sa51fZQoaAZHQGHRCgCfYjBoB03oA2gIR0CSs+E4NqgzdX2UKGgGR0ByR48/2TPjaAdNEQFoCEdAkrSrehwl0HV9lChoBkdAcadXDFZPmGgHTZ4BaAhHQJK0+U7jkuJ1fZQoaAZHQG/bjhtLteFoB0vtaAhHQJK1eY0EX+F1fZQoaAZHQHIRtRWLgoBoB01YAWgIR0CSttzP8hs7dX2UKGgGR0BDzkIgNgBtaAdLzGgIR0CStub2USqVdX2UKGgGR0Bw7EsPJ7swaAdL22gIR0CStxf8/D+BdX2UKGgGR0Bxhyj1wo9caAdNAgFoCEdAkrddDD0lJHV9lChoBkdAc4QRf4REnmgHS+NoCEdAkrgSzC1qnHV9lChoBkdAcgfd/8VHnWgHTRwBaAhHQJK4Zi6QNkR1fZQoaAZHQHDG540Mw11oB01uAWgIR0CSufWiUPhAdX2UKGgGR0Bxyq0VrRBvaAdNRQFoCEdAkroaoqCpWHV9lChoBkdAcpNGjbi6x2gHTRwBaAhHQJK6mUbDMvB1fZQoaAZHQHCHtVvMr3FoB00HAWgIR0CSuqKKpDNRdX2UKGgGR0BwDDezlcQiaAdNCwFoCEdAkrx97BwdbXV9lChoBkdAbetB+F10T2gHS/VoCEdAkrzO1SflIXV9lChoBkdAbPz7Z39rGmgHTQABaAhHQJK83k0aZQZ1fZQoaAZHQG+XO3c580FoB0v/aAhHQJK9njR2KVJ1fZQoaAZHQF61lOoHcDdoB03oA2gIR0CSvo51vES/dX2UKGgGR0BxsxECvHLiaAdL82gIR0CSvo6GQCCBdX2UKGgGR0Bu1AnlXA/LaAdNBAFoCEdAkr8Con8baXV9lChoBkdAcxYGXokiU2gHS/RoCEdAkr8H8CPp6nV9lChoBkdAcMDHFglWwWgHS/BoCEdAkr+TyjHn2nV9lChoBkdAcOCM/QjUu2gHS+hoCEdAkr+rqIJqqXV9lChoBkdAcYOraM72c2gHTS8BaAhHQJLAVLHuJDV1fZQoaAZHQHFUyKNyYHBoB0vhaAhHQJLA6qtHQQd1fZQoaAZHQHBay9qUNa1oB0vtaAhHQJLBzYGt6ol1fZQoaAZHQHDscD4gzP9oB00GAWgIR0CSwe5PuXu3dX2UKGgGR0Bv4kjkdV/+aAdL6GgIR0CSw3ZPl+3IdX2UKGgGR0BwlpqTKT0QaAdL9mgIR0CSxElU6xPgdX2UKGgGR0ByIC0a6z3RaAdNQQFoCEdAksRtjTa0yHV9lChoBkdAbzI0x/NJOGgHTRUBaAhHQJLFWCHymQ91fZQoaAZHQG664R28qWloB0vjaAhHQJLG+cx0uDl1fZQoaAZHQHDvATIvJzVoB00VAWgIR0CSx1fG+9J0dX2UKGgGR0BxILmHP/rCaAdNfQJoCEdAksggCbMHKXV9lChoBkdActGF1B+nZWgHTSoBaAhHQJLILiVB2Oh1fZQoaAZHQEfEXnhbW3BoB0u/aAhHQJLInReC04R1fZQoaAZHQHFMcTrVvuRoB01SAWgIR0CS3YfNA1NydX2UKGgGR0BxhHocJdB0aAdNPQFoCEdAkt2YwM6RyXV9lChoBkdAcQ5fdyksSWgHTSQBaAhHQJLe5joZAIJ1fZQoaAZHQHIoGOU+s5poB02XAWgIR0CS3vY/FBIGdX2UKGgGR0BxAKC9RJmNaAdNgwFoCEdAkuA2Rq46O3V9lChoBkdAcsExB3RoiGgHTWYBaAhHQJLhQBNmDlJ1fZQoaAZHQHA3C5AhStNoB0vsaAhHQJLhvsHB1tB1fZQoaAZHQHEW5vkzXSVoB00XAWgIR0CS4nAPd2xIdX2UKGgGR0Bx3AZXMhX9aAdNGgFoCEdAkuVWqHXVb3V9lChoBkdAchlEsJ6Y3WgHS91oCEdAkua/BvaURnV9lChoBkdAcOjruIAOrmgHS/BoCEdAkuch4Y77sXV9lChoBkdAcJnsVtXPq2gHTR0BaAhHQJLoBVmz0H11fZQoaAZHQHLpLuMMqjJoB00AAWgIR0CS6BSy+pOvdX2UKGgGR0BFJbA1vVEvaAdLy2gIR0CS6Dm4RVZLdX2UKGgGR0ByvnKvFFUiaAdNKAFoCEdAkuj0xIre7HV9lChoBkdASpzJSzgMt2gHS9FoCEdAkutdl/Yra3V9lChoBkdAcFwj9n9NvmgHS/RoCEdAkuvmaUiY9nV9lChoBkdAcBlF1jiGWWgHTRMBaAhHQJLsEe6qbSZ1fZQoaAZHQHFJIVh1DBxoB0vYaAhHQJLscJRfnfV1fZQoaAZHQHN6WoegctJoB001AWgIR0CS7G71qWTpdX2UKGgGR0ByDN4X40uUaAdL+GgIR0CS7PgJ1JUYdX2UKGgGR0BzEgiTt9hJaAdNQgFoCEdAku1zcdo373V9lChoBkdAcIy7CBPKuGgHTRkBaAhHQJLwXUaya/h1fZQoaAZHQHHKEL2HtWxoB0vpaAhHQJLwhEVnEl51fZQoaAZHQG6Qrehwl0JoB00IAWgIR0CS8Kdmxt52dX2UKGgGR0BxoOjesPrfaAdNAAFoCEdAkvErTDwYtXV9lChoBkdAcVUzU7Sy+2gHTQABaAhHQJLxNix3V091fZQoaAZHQHDOgflp48loB0viaAhHQJLy2TW5H3F1fZQoaAZHQHAz/51vETBoB01TAWgIR0CS82+I/JNkdX2UKGgGR0BwJqUr08NhaAdL+2gIR0CS9EFgDzRQdX2UKGgGR0Bw9YwmE5AAaAdNCQFoCEdAkvVRPGhmG3V9lChoBkdAOlCTpxFRYWgHS7NoCEdAkvbG87IT5HV9lChoBkdAcDeHeJpFkWgHTTUBaAhHQJL3kaKk2xZ1fZQoaAZHQHIeUoScslNoB01sAWgIR0CS+OYKpkwwdX2UKGgGR0Bx89gJC0F9aAdNSgFoCEdAkvjypiqhlHV9lChoBkdAcIXdD6WPcWgHS/ZoCEdAkvnk/jbSJHV9lChoBkdAb4SphF3IMmgHTQ4BaAhHQJL55Pci4ax1fZQoaAZHQHH2tRBNVR1oB00dAWgIR0CS+p4m1IAfdX2UKGgGR0BvgMXrMTviaAdNEgFoCEdAkvq/0ulGgHV9lChoBkdAcLBuAqd6LWgHS+loCEdAkvsGQfZElXV9lChoBkdAZuDJkoWpImgHTegDaAhHQJL7ni0fHPx1fZQoaAZHQHCX2jj7yhBoB0v2aAhHQJL8jXRPXTV1fZQoaAZHQHHd+NkvsZ5oB00rAWgIR0CS/XymQ8wIdX2UKGgGR0Bg86ynk1dgaAdN6ANoCEdAkv4ahQFcIXV9lChoBkdAcW54c3l0YGgHTQwBaAhHQJL/enWJ79h1fZQoaAZHQHDck0FbFCNoB01cAmgIR0CTAC974SHudX2UKGgGR0BxtlVaOgg6aAdNVQFoCEdAkwCn27FsHnV9lChoBkdAbi7in5zo2WgHTT8BaAhHQJMCJVIZqEh1fZQoaAZHQHDFIEOiFkBoB00sAWgIR0CTAvf4AS39dX2UKGgGR0Bx9clw97ngaAdNFQFoCEdAkwMb5hz/63V9lChoBkdAbjRZ9uxbCGgHS/ZoCEdAkwNMOLBKtnV9lChoBkdAbhwuPFNtZWgHS+JoCEdAkwNUBnzxw3V9lChoBkdAcTFxn3+MqGgHTSQBaAhHQJMDoaQ3gk11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |