--- license: cc-by-nc-nd-4.0 base_model: google/t5-efficient-base tags: - generated_from_trainer model-index: - name: checkpoint results: [] --- # how to use the model # Load model directly `from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch tokenizer = AutoTokenizer.from_pretrained("piazzola/test1") model = AutoModelForSeq2SeqLM.from_pretrained("piazzola/test1") sentence = "i left the keys in the car." with torch.no_grad(): inputs = tokenizer([sentence], return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0]) print(generated_text)` # checkpoint This model is a fine-tuned version of [google/t5-efficient-base](https://huggingface.co/google/t5-efficient-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3088 | 0.3 | 7458 | 0.2634 | | 0.2615 | 0.6 | 14916 | 0.2143 | | 0.2294 | 0.9 | 22374 | 0.1951 | | 0.2137 | 1.2 | 29832 | 0.1830 | | 0.1944 | 1.5 | 37290 | 0.1736 | | 0.1918 | 1.8 | 44748 | 0.1682 | | 0.18 | 2.1 | 52206 | 0.1659 | | 0.1801 | 2.4 | 59664 | 0.1623 | | 0.185 | 2.7 | 67122 | 0.1609 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2