File size: 35,507 Bytes
a4498fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-finetuned-segments-opit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-segments-opit
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3483
- Mean Iou: 0.1474
- Mean Accuracy: 0.1958
- Overall Accuracy: 0.7227
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.7892
- Accuracy Flat-sidewalk: 0.9075
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.1029
- Accuracy Flat-parkingdriveway: 0.0001
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8749
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8943
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9118
- Accuracy Nature-terrain: 0.6546
- Accuracy Sky: 0.9352
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.4282
- Iou Flat-sidewalk: 0.7768
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.1021
- Iou Flat-parkingdriveway: 0.0001
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.6372
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5530
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7392
- Iou Nature-terrain: 0.5009
- Iou Sky: 0.8328
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.8103 | 0.06 | 25 | 3.0462 | 0.0835 | 0.1351 | 0.5790 | nan | 0.1892 | 0.9330 | 0.0 | 0.0048 | 0.0006 | nan | 0.0005 | 0.0002 | 0.0 | 0.5793 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0003 | 0.0009 | 0.0 | 0.0 | 0.6599 | 0.4398 | 0.4779 | 0.0004 | 0.0 | 0.0151 | 0.0 | 0.0 | 0.1368 | 0.6091 | 0.0 | 0.0046 | 0.0006 | 0.0 | 0.0005 | 0.0002 | 0.0 | 0.4916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3537 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0003 | 0.0008 | 0.0 | 0.0 | 0.5851 | 0.2698 | 0.4572 | 0.0004 | 0.0 | 0.0123 | 0.0 |
| 2.3833 | 0.12 | 50 | 2.3708 | 0.1025 | 0.1539 | 0.6295 | nan | 0.6185 | 0.8261 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.7749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8688 | 0.0568 | 0.6944 | 0.0 | 0.0 | 0.0016 | 0.0 | nan | 0.3347 | 0.6672 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.5428 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4369 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6274 | 0.0451 | 0.6247 | 0.0 | 0.0 | 0.0015 | 0.0 |
| 2.1946 | 0.19 | 75 | 1.9680 | 0.1145 | 0.1612 | 0.6615 | nan | 0.6725 | 0.8726 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.7496 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9185 | 0.0333 | 0.8355 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3738 | 0.7037 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5385 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4836 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6493 | 0.0311 | 0.7684 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.959 | 0.25 | 100 | 1.8828 | 0.1179 | 0.1636 | 0.6727 | nan | 0.6801 | 0.8928 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.7736 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9482 | 0.0389 | 0.8584 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3884 | 0.7151 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5160 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6418 | 0.0360 | 0.7878 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.8759 | 0.31 | 125 | 1.7092 | 0.1260 | 0.1758 | 0.6862 | nan | 0.7247 | 0.8976 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.9094 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8479 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9024 | 0.2625 | 0.9054 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3977 | 0.7307 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5329 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6911 | 0.2245 | 0.8065 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.0333 | 0.38 | 150 | 1.5558 | 0.1267 | 0.1751 | 0.6898 | nan | 0.7565 | 0.8952 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8792 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8874 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9104 | 0.1928 | 0.9055 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4083 | 0.7455 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5928 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6820 | 0.1637 | 0.8069 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8985 | 0.44 | 175 | 1.5370 | 0.1277 | 0.1752 | 0.6939 | nan | 0.7438 | 0.9025 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9307 | 0.1976 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4223 | 0.7553 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6077 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6724 | 0.1691 | 0.8133 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7908 | 0.5 | 200 | 1.4854 | 0.1339 | 0.1843 | 0.7020 | nan | 0.7612 | 0.9068 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.9215 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8381 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9078 | 0.4480 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4095 | 0.7591 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5471 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5386 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7168 | 0.3673 | 0.8119 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4371 | 0.56 | 225 | 1.4176 | 0.1367 | 0.1830 | 0.7079 | nan | 0.7035 | 0.9303 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8694 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9287 | 0.4230 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4233 | 0.7534 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5331 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7049 | 0.3427 | 0.8312 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4506 | 0.62 | 250 | 1.4011 | 0.1350 | 0.1827 | 0.7079 | nan | 0.6936 | 0.9362 | 0.0 | 0.0364 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8612 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9299 | 0.3720 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4251 | 0.7533 | 0.0 | 0.0363 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5961 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5472 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6990 | 0.3026 | 0.8250 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3095 | 0.69 | 275 | 1.4039 | 0.1398 | 0.1861 | 0.7134 | nan | 0.6873 | 0.9430 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8960 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.5055 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4187 | 0.7531 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5457 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7261 | 0.4143 | 0.8343 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4218 | 0.75 | 300 | 1.3735 | 0.1370 | 0.1856 | 0.7082 | nan | 0.7701 | 0.8980 | 0.0 | 0.0524 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8762 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.4052 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4267 | 0.7668 | 0.0 | 0.0522 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6148 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5481 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6931 | 0.3263 | 0.8172 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3986 | 0.81 | 325 | 1.3224 | 0.1451 | 0.1917 | 0.7223 | nan | 0.7354 | 0.9296 | 0.0 | 0.1261 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8946 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9269 | 0.5292 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4389 | 0.7700 | 0.0 | 0.1253 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6395 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5541 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | 0.4083 | 0.8409 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3335 | 0.88 | 350 | 1.2909 | 0.1454 | 0.1921 | 0.7230 | nan | 0.7157 | 0.9388 | 0.0 | 0.1024 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8896 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8932 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9207 | 0.5667 | 0.9276 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4347 | 0.7657 | 0.0 | 0.1020 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6232 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5533 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7300 | 0.4607 | 0.8376 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6376 | 0.94 | 375 | 1.3109 | 0.1476 | 0.1964 | 0.7253 | nan | 0.7617 | 0.9215 | 0.0 | 0.1225 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.9008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8842 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6529 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4357 | 0.7750 | 0.0 | 0.1216 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6139 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5572 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7387 | 0.5011 | 0.8333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4354 | 1.0 | 400 | 1.3483 | 0.1474 | 0.1958 | 0.7227 | nan | 0.7892 | 0.9075 | 0.0 | 0.1029 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8943 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6546 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4282 | 0.7768 | 0.0 | 0.1021 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6372 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5530 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7392 | 0.5009 | 0.8328 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|