Pierce Maloney
commited on
Commit
•
833b301
1
Parent(s):
88fdb99
adding new bad word
Browse files- handler.py +9 -15
- test_tokenizer +0 -0
handler.py
CHANGED
@@ -7,9 +7,9 @@ class EndpointHandler():
|
|
7 |
def __init__(self, path=""):
|
8 |
# Preload all the elements you are going to need at inference.
|
9 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
-
|
11 |
-
|
12 |
-
self.
|
13 |
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
|
14 |
|
15 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
@@ -21,24 +21,18 @@ class EndpointHandler():
|
|
21 |
A :obj:`list` | `dict`: will be serialized and returned
|
22 |
"""
|
23 |
inputs = data.pop("inputs", data)
|
24 |
-
input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
|
25 |
|
26 |
# Bad word: id 3070 corresponds to "(*", and we do not want to output a comment
|
27 |
-
|
28 |
-
|
29 |
-
max_length=input_ids.shape[1] + 50,
|
30 |
stopping_criteria=self.stopping_criteria,
|
31 |
-
|
|
|
|
|
32 |
temperature=1,
|
33 |
top_k=40,
|
34 |
-
# pad_token_id=self.tokenizer.eos_token_id,
|
35 |
-
# return_dict_in_generate=True, # To get more detailed output (optional)
|
36 |
)
|
37 |
-
|
38 |
-
# Decode the generated ids to text
|
39 |
-
# Exclude the input_ids length to get only the new tokens
|
40 |
-
prediction_text = self.tokenizer.decode(prediction_ids[0, input_ids.shape[1]:], skip_special_tokens=True)
|
41 |
-
return [{"generated_text": prediction_text, "ids": prediction_ids[0, input_ids.shape[1]:].tolist()}]
|
42 |
|
43 |
|
44 |
class StopAtPeriodCriteria(StoppingCriteria):
|
|
|
7 |
def __init__(self, path=""):
|
8 |
# Preload all the elements you are going to need at inference.
|
9 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(path)
|
11 |
+
tokenizer.pad_token = tokenizer.eos_token
|
12 |
+
self.pipeline = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
13 |
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
|
14 |
|
15 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
|
21 |
A :obj:`list` | `dict`: will be serialized and returned
|
22 |
"""
|
23 |
inputs = data.pop("inputs", data)
|
|
|
24 |
|
25 |
# Bad word: id 3070 corresponds to "(*", and we do not want to output a comment
|
26 |
+
prediction = self.pipeline(
|
27 |
+
inputs,
|
|
|
28 |
stopping_criteria=self.stopping_criteria,
|
29 |
+
max_new_tokens=50,
|
30 |
+
return_full_text=False,
|
31 |
+
bad_words_ids=[[3070], [313, 334], [10456]],
|
32 |
temperature=1,
|
33 |
top_k=40,
|
|
|
|
|
34 |
)
|
35 |
+
return prediction
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
class StopAtPeriodCriteria(StoppingCriteria):
|
test_tokenizer
ADDED
File without changes
|