from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. tokenizer = AutoTokenizer.from_pretrained(path) self.tokenizer = tokenizer self.model = AutoModelForCausalLM.from_pretrained(path) self.tokenizer.pad_token = tokenizer.eos_token self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) input_ids = self.tokenizer.encode(inputs, return_tensors="pt") # Bad word: id 3070 corresponds to "(*", and we do not want to output a comment prediction_ids = self.model.generate( input_ids, max_length=input_ids.shape[1] + 50, stopping_criteria=self.stopping_criteria, bad_words_ids=[[3070], [313, 334]], temperature=1, top_k=40, # pad_token_id=self.tokenizer.eos_token_id, # return_dict_in_generate=True, # To get more detailed output (optional) ) # Decode the generated ids to text # Exclude the input_ids length to get only the new tokens print("Generated IDs:", prediction_ids[0, input_ids.shape[1]:]) prediction_text = self.tokenizer.decode(prediction_ids[0, input_ids.shape[1]:], skip_special_tokens=True) return [{"generated_text": prediction_text}] class StopAtPeriodCriteria(StoppingCriteria): def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): # Decode the last generated token to text last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) # Check if the decoded text ends with a period return '.' in last_token_text