from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList # class EndpointHandler(): # def __init__(self, path=""): # tokenizer = AutoTokenizer.from_pretrained(path) # tokenizer.pad_token = tokenizer.eos_token # self.model = AutoModelForCausalLM.from_pretrained(path).to('cuda') # self.tokenizer = tokenizer # self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) # def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: # """ # data args: # inputs (:obj: `str`) # kwargs # Return: # A :obj:`list` | `dict`: will be serialized and returned # """ # inputs = data.pop("inputs", data) # additional_bad_words_ids = data.pop("additional_bad_words_ids", []) # # 3070, 10456, [313, 334] corresponds to "(*", and we do not want to output a comment # # 13 is a newline character # # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted." # # [2087, 29885, 4430, 29889] is "Admitted." # bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889]] # bad_words_ids.extend(additional_bad_words_ids) # input_ids = self.tokenizer.encode(inputs, return_tensors="pt").to('cuda') # max_generation_length = 75 # Desired number of tokens to generate # # max_input_length = 4092 - max_generation_length # Maximum input length to allow space for generation # # # Truncate input_ids to the most recent tokens that fit within the max_input_length # # if input_ids.shape[1] > max_input_length: # # input_ids = input_ids[:, -max_input_length:] # max_length = input_ids.shape[1] + max_generation_length # generated_ids = self.model.generate( # input_ids, # max_length=max_length, # 50 new tokens # bad_words_ids=bad_words_ids, # temperature=1, # top_k=40, # do_sample=True, # stopping_criteria=self.stopping_criteria, # ) # generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}] # return prediction class EndpointHandler(): def __init__(self, path=""): self.model_path = path tokenizer = AutoTokenizer.from_pretrained(path) tokenizer.pad_token = tokenizer.eos_token self.tokenizer = tokenizer # Initialize the pipeline for text generation self.text_generation_pipeline = pipeline("text-generation", model=path, tokenizer=self.tokenizer, device=0) # device=0 for CUDA def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) additional_bad_words_ids = data.pop("additional_bad_words_ids", []) # Define bad words to avoid in the output bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889]] bad_words_ids.extend(additional_bad_words_ids) # Generate text using the pipeline generation_kwargs = { "max_new_tokens": 75, "temperature": 0.7, "top_k": 40, "bad_words_ids": bad_words_ids, "pad_token_id": self.tokenizer.eos_token_id, "return_full_text": False, # Only return the new generated tokens } generated_outputs = self.text_generation_pipeline(inputs, **generation_kwargs) # Format the output predictions = [{"generated_text": output["generated_text"]} for output in generated_outputs] return predictions class StopAtPeriodCriteria(StoppingCriteria): def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): # Decode the last generated token to text last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) # Check if the decoded text ends with a period return '.' in last_token_text