from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. tokenizer = AutoTokenizer.from_pretrained(path) tokenizer.pad_token = tokenizer.eos_token self.model = AutoModelForCausalLM.from_pretrained(path) self.tokenizer = tokenizer self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) # 3070, 10456, [313, 334] corresponds to "(*", and we do not want to output a comment # 13 is a newline character # [1976, 441, 29889] is "Abort." # [2087, 29885, 4430, 29889] is "Admitted." bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889]] input_ids = self.tokenizer.encode(inputs, return_tensors="pt") # Generate text using model.generate generated_ids = self.model.generate( input_ids, max_length=input_ids.shape[1] + 50, # 50 new tokens bad_words_ids=bad_words_ids, temperature=1, top_k=40, stopping_criteria=self.stopping_criteria, ) generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True) prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}] return prediction class StopAtPeriodCriteria(StoppingCriteria): def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): # Decode the last generated token to text last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) # Check if the decoded text ends with a period return '.' in last_token_text