from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(path) tokenizer.pad_token = tokenizer.eos_token self.pipeline = pipeline('text-generation', model=model, tokenizer=tokenizer) self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) # Bad word: id 3070 corresponds to "(*", and we do not want to output a comment prediction = self.pipeline( inputs, stopping_criteria=self.stopping_criteria, max_new_tokens=50, return_full_text=False, bad_words_ids=[[3070], [313, 334], [10456]], temperature=1, top_k=40, ) return prediction class StopAtPeriodCriteria(StoppingCriteria): def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): # Decode the last generated token to text last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) # Check if the decoded text ends with a period return '.' in last_token_text