pierreinalco commited on
Commit
ae7847a
1 Parent(s): 8a6c748

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:CosineSimilarityLoss
10
+ base_model: pierreinalco/distilbert-base-uncased-sts
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: '[SYNTAX] Inversion is a common syntactic feature in questions.'
24
+ sentences:
25
+ - '[SYNTAX] DNA transcription is a common biological mechanism regulating RNA synthesis.'
26
+ - '[SYNTAX] Fermions and bosons are the two broad categories of subatomic particles.'
27
+ - Extensive legislative debate is often required when amending existing public policies.
28
+ - source_sentence: The examination of meaning in language is known as semantics.
29
+ sentences:
30
+ - 'Semantics is the study of meaning in language. '
31
+ - '[SYNTAX] Extreme weather events are becoming more frequent due to climate change.'
32
+ - Regular practice is essential to ensure the success of musical performances.
33
+ - source_sentence: Marine life thrives in ecosystems teeming with diverse species.
34
+ sentences:
35
+ - Climate change modifies the balance of ecosystems around the globe.
36
+ - '[SYNTAX] One key focus of archaeology is the exploration of ancient civilizations.'
37
+ - 'By examining butcher marks, scientists can infer ancient dietary practices. '
38
+ - source_sentence: Bicyclists rode swiftly in the park while a gentle breeze blew.
39
+ sentences:
40
+ - 'Urban parks offer residents vital green spaces for recreation and relaxation. '
41
+ - Contour farming follows the natural shape of the land to improve water retention.
42
+ - Skipping breakfast can affect your energy levels and concentration throughout
43
+ the day.
44
+ - source_sentence: Fossil fuel reserves are finite and will eventually be depleted.
45
+ sentences:
46
+ - Trace fossils, like footprints and burrows, reveal the behavior of ancient organisms.
47
+ - Electric trains are more environmentally friendly compared to diesel-powered ones.
48
+ - A declining atmospheric pressure frequently indicates the imminent arrival of
49
+ a storm.
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on pierreinalco/distilbert-base-uncased-sts
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: custom dev
59
+ type: custom-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.9199550350229381
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8477353426901187
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.922270207368092
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8455601721195604
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.9225814550760436
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8455566196441302
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.9112758242260417
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8381909699446571
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.9225814550760436
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8477353426901187
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: custom test
96
+ type: custom-test
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.9124658569127322
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8453565105014698
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.9161256101176948
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.845382323611419
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.9165265409472989
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8457233262812305
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.903021036040846
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.8319052098219432
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.9165265409472989
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8457233262812305
127
+ name: Spearman Max
128
+ ---
129
+
130
+ # SentenceTransformer based on pierreinalco/distilbert-base-uncased-sts
131
+
132
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [pierreinalco/distilbert-base-uncased-sts](https://huggingface.co/pierreinalco/distilbert-base-uncased-sts). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** Sentence Transformer
138
+ - **Base model:** [pierreinalco/distilbert-base-uncased-sts](https://huggingface.co/pierreinalco/distilbert-base-uncased-sts) <!-- at revision 5c3e1e82bd154604c8803ea705b7bc57712eab5b -->
139
+ - **Maximum Sequence Length:** 512 tokens
140
+ - **Output Dimensionality:** 768 tokens
141
+ - **Similarity Function:** Cosine Similarity
142
+ <!-- - **Training Dataset:** Unknown -->
143
+ <!-- - **Language:** Unknown -->
144
+ <!-- - **License:** Unknown -->
145
+
146
+ ### Model Sources
147
+
148
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
149
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
150
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
151
+
152
+ ### Full Model Architecture
153
+
154
+ ```
155
+ SentenceTransformer(
156
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
157
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
158
+ )
159
+ ```
160
+
161
+ ## Usage
162
+
163
+ ### Direct Usage (Sentence Transformers)
164
+
165
+ First install the Sentence Transformers library:
166
+
167
+ ```bash
168
+ pip install -U sentence-transformers
169
+ ```
170
+
171
+ Then you can load this model and run inference.
172
+ ```python
173
+ from sentence_transformers import SentenceTransformer
174
+
175
+ # Download from the 🤗 Hub
176
+ model = SentenceTransformer("sentence_transformers_model_id")
177
+ # Run inference
178
+ sentences = [
179
+ 'Fossil fuel reserves are finite and will eventually be depleted.',
180
+ 'Trace fossils, like footprints and burrows, reveal the behavior of ancient organisms.',
181
+ 'Electric trains are more environmentally friendly compared to diesel-powered ones.',
182
+ ]
183
+ embeddings = model.encode(sentences)
184
+ print(embeddings.shape)
185
+ # [3, 768]
186
+
187
+ # Get the similarity scores for the embeddings
188
+ similarities = model.similarity(embeddings, embeddings)
189
+ print(similarities.shape)
190
+ # [3, 3]
191
+ ```
192
+
193
+ <!--
194
+ ### Direct Usage (Transformers)
195
+
196
+ <details><summary>Click to see the direct usage in Transformers</summary>
197
+
198
+ </details>
199
+ -->
200
+
201
+ <!--
202
+ ### Downstream Usage (Sentence Transformers)
203
+
204
+ You can finetune this model on your own dataset.
205
+
206
+ <details><summary>Click to expand</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Out-of-Scope Use
213
+
214
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
215
+ -->
216
+
217
+ ## Evaluation
218
+
219
+ ### Metrics
220
+
221
+ #### Semantic Similarity
222
+ * Dataset: `custom-dev`
223
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
224
+
225
+ | Metric | Value |
226
+ |:--------------------|:-----------|
227
+ | pearson_cosine | 0.92 |
228
+ | **spearman_cosine** | **0.8477** |
229
+ | pearson_manhattan | 0.9223 |
230
+ | spearman_manhattan | 0.8456 |
231
+ | pearson_euclidean | 0.9226 |
232
+ | spearman_euclidean | 0.8456 |
233
+ | pearson_dot | 0.9113 |
234
+ | spearman_dot | 0.8382 |
235
+ | pearson_max | 0.9226 |
236
+ | spearman_max | 0.8477 |
237
+
238
+ #### Semantic Similarity
239
+ * Dataset: `custom-test`
240
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
241
+
242
+ | Metric | Value |
243
+ |:--------------------|:-----------|
244
+ | pearson_cosine | 0.9125 |
245
+ | **spearman_cosine** | **0.8454** |
246
+ | pearson_manhattan | 0.9161 |
247
+ | spearman_manhattan | 0.8454 |
248
+ | pearson_euclidean | 0.9165 |
249
+ | spearman_euclidean | 0.8457 |
250
+ | pearson_dot | 0.903 |
251
+ | spearman_dot | 0.8319 |
252
+ | pearson_max | 0.9165 |
253
+ | spearman_max | 0.8457 |
254
+
255
+ <!--
256
+ ## Bias, Risks and Limitations
257
+
258
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
259
+ -->
260
+
261
+ <!--
262
+ ### Recommendations
263
+
264
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
265
+ -->
266
+
267
+ ## Training Details
268
+
269
+ ### Training Dataset
270
+
271
+ #### Unnamed Dataset
272
+
273
+
274
+ * Size: 19,352 training samples
275
+ * Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
276
+ * Approximate statistics based on the first 1000 samples:
277
+ | | s1 | s2 | label |
278
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
279
+ | type | string | string | int |
280
+ | details | <ul><li>min: 10 tokens</li><li>mean: 19.85 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.47 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>1: ~48.60%</li></ul> |
281
+ * Samples:
282
+ | s1 | s2 | label |
283
+ |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------|
284
+ | <code>Resources and funding are essential for the successful rollout of any new curriculum.</code> | <code>For any new curriculum to be successfully rolled out, it is essential to have resources and funding.</code> | <code>1</code> |
285
+ | <code>Upgrading to LED lighting is a simple step toward improving energy efficiency in buildings.</code> | <code>Upgrading to new software is a simple step toward improving technology adoption in companies.</code> | <code>0</code> |
286
+ | <code>Ethnicity and language often intersect in interesting and complex ways.</code> | <code>Ethnicity and culture often diverge in unexpected and straightforward ways.</code> | <code>0</code> |
287
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
288
+ ```json
289
+ {
290
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
291
+ }
292
+ ```
293
+
294
+ ### Evaluation Dataset
295
+
296
+ #### Unnamed Dataset
297
+
298
+
299
+ * Size: 2,419 evaluation samples
300
+ * Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
301
+ * Approximate statistics based on the first 1000 samples:
302
+ | | s1 | s2 | label |
303
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
304
+ | type | string | string | int |
305
+ | details | <ul><li>min: 10 tokens</li><li>mean: 19.91 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.41 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~52.90%</li><li>1: ~47.10%</li></ul> |
306
+ * Samples:
307
+ | s1 | s2 | label |
308
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
309
+ | <code>[SYNTAX] Consuming too much processed sugar can lead to insulin resistance and diabetes.</code> | <code>[SYNTAX] Drinking too much water can help maintain proper hydration and overall health.</code> | <code>1</code> |
310
+ | <code>Neutral tones and minimalist designs are staples of gender-neutral fashion. </code> | <code>Colorful patterns and intricate designs are staples of traditional ceremonial attire.</code> | <code>0</code> |
311
+ | <code>[SYNTAX] Policies focusing on sustainable agriculture practices are essential for ensuring food security in the face of climate change. </code> | <code>[SYNTAX] Ensuring food security amidst climate change requires critical policies that emphasize sustainable agricultural practices.</code> | <code>0</code> |
312
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
313
+ ```json
314
+ {
315
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
316
+ }
317
+ ```
318
+
319
+ ### Training Hyperparameters
320
+ #### Non-Default Hyperparameters
321
+
322
+ - `eval_strategy`: steps
323
+ - `per_device_train_batch_size`: 16
324
+ - `per_device_eval_batch_size`: 16
325
+ - `num_train_epochs`: 10
326
+ - `warmup_ratio`: 0.1
327
+ - `fp16`: True
328
+
329
+ #### All Hyperparameters
330
+ <details><summary>Click to expand</summary>
331
+
332
+ - `overwrite_output_dir`: False
333
+ - `do_predict`: False
334
+ - `eval_strategy`: steps
335
+ - `prediction_loss_only`: True
336
+ - `per_device_train_batch_size`: 16
337
+ - `per_device_eval_batch_size`: 16
338
+ - `per_gpu_train_batch_size`: None
339
+ - `per_gpu_eval_batch_size`: None
340
+ - `gradient_accumulation_steps`: 1
341
+ - `eval_accumulation_steps`: None
342
+ - `learning_rate`: 5e-05
343
+ - `weight_decay`: 0.0
344
+ - `adam_beta1`: 0.9
345
+ - `adam_beta2`: 0.999
346
+ - `adam_epsilon`: 1e-08
347
+ - `max_grad_norm`: 1.0
348
+ - `num_train_epochs`: 10
349
+ - `max_steps`: -1
350
+ - `lr_scheduler_type`: linear
351
+ - `lr_scheduler_kwargs`: {}
352
+ - `warmup_ratio`: 0.1
353
+ - `warmup_steps`: 0
354
+ - `log_level`: passive
355
+ - `log_level_replica`: warning
356
+ - `log_on_each_node`: True
357
+ - `logging_nan_inf_filter`: True
358
+ - `save_safetensors`: True
359
+ - `save_on_each_node`: False
360
+ - `save_only_model`: False
361
+ - `restore_callback_states_from_checkpoint`: False
362
+ - `no_cuda`: False
363
+ - `use_cpu`: False
364
+ - `use_mps_device`: False
365
+ - `seed`: 42
366
+ - `data_seed`: None
367
+ - `jit_mode_eval`: False
368
+ - `use_ipex`: False
369
+ - `bf16`: False
370
+ - `fp16`: True
371
+ - `fp16_opt_level`: O1
372
+ - `half_precision_backend`: auto
373
+ - `bf16_full_eval`: False
374
+ - `fp16_full_eval`: False
375
+ - `tf32`: None
376
+ - `local_rank`: 0
377
+ - `ddp_backend`: None
378
+ - `tpu_num_cores`: None
379
+ - `tpu_metrics_debug`: False
380
+ - `debug`: []
381
+ - `dataloader_drop_last`: False
382
+ - `dataloader_num_workers`: 0
383
+ - `dataloader_prefetch_factor`: None
384
+ - `past_index`: -1
385
+ - `disable_tqdm`: False
386
+ - `remove_unused_columns`: True
387
+ - `label_names`: None
388
+ - `load_best_model_at_end`: False
389
+ - `ignore_data_skip`: False
390
+ - `fsdp`: []
391
+ - `fsdp_min_num_params`: 0
392
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
393
+ - `fsdp_transformer_layer_cls_to_wrap`: None
394
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
395
+ - `deepspeed`: None
396
+ - `label_smoothing_factor`: 0.0
397
+ - `optim`: adamw_torch
398
+ - `optim_args`: None
399
+ - `adafactor`: False
400
+ - `group_by_length`: False
401
+ - `length_column_name`: length
402
+ - `ddp_find_unused_parameters`: None
403
+ - `ddp_bucket_cap_mb`: None
404
+ - `ddp_broadcast_buffers`: False
405
+ - `dataloader_pin_memory`: True
406
+ - `dataloader_persistent_workers`: False
407
+ - `skip_memory_metrics`: True
408
+ - `use_legacy_prediction_loop`: False
409
+ - `push_to_hub`: False
410
+ - `resume_from_checkpoint`: None
411
+ - `hub_model_id`: None
412
+ - `hub_strategy`: every_save
413
+ - `hub_private_repo`: False
414
+ - `hub_always_push`: False
415
+ - `gradient_checkpointing`: False
416
+ - `gradient_checkpointing_kwargs`: None
417
+ - `include_inputs_for_metrics`: False
418
+ - `eval_do_concat_batches`: True
419
+ - `fp16_backend`: auto
420
+ - `push_to_hub_model_id`: None
421
+ - `push_to_hub_organization`: None
422
+ - `mp_parameters`:
423
+ - `auto_find_batch_size`: False
424
+ - `full_determinism`: False
425
+ - `torchdynamo`: None
426
+ - `ray_scope`: last
427
+ - `ddp_timeout`: 1800
428
+ - `torch_compile`: False
429
+ - `torch_compile_backend`: None
430
+ - `torch_compile_mode`: None
431
+ - `dispatch_batches`: None
432
+ - `split_batches`: None
433
+ - `include_tokens_per_second`: False
434
+ - `include_num_input_tokens_seen`: False
435
+ - `neftune_noise_alpha`: None
436
+ - `optim_target_modules`: None
437
+ - `batch_eval_metrics`: False
438
+ - `batch_sampler`: batch_sampler
439
+ - `multi_dataset_batch_sampler`: proportional
440
+
441
+ </details>
442
+
443
+ ### Training Logs
444
+ | Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine |
445
+ |:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
446
+ | 0.3300 | 100 | 0.2137 | 0.0971 | 0.8252 | - |
447
+ | 0.6601 | 200 | 0.0722 | 0.0516 | 0.8445 | - |
448
+ | 0.9901 | 300 | 0.0503 | 0.0440 | 0.8480 | - |
449
+ | 1.3201 | 400 | 0.0353 | 0.0417 | 0.8479 | - |
450
+ | 1.6502 | 500 | 0.032 | 0.0388 | 0.8500 | - |
451
+ | 1.9802 | 600 | 0.0312 | 0.0375 | 0.8484 | - |
452
+ | 2.3102 | 700 | 0.0175 | 0.0380 | 0.8494 | - |
453
+ | 2.6403 | 800 | 0.016 | 0.0368 | 0.8486 | - |
454
+ | 2.9703 | 900 | 0.0158 | 0.0367 | 0.8486 | - |
455
+ | 3.3003 | 1000 | 0.0087 | 0.0394 | 0.8463 | - |
456
+ | 3.6304 | 1100 | 0.0086 | 0.0371 | 0.8463 | - |
457
+ | 3.9604 | 1200 | 0.0098 | 0.0368 | 0.8475 | - |
458
+ | 4.2904 | 1300 | 0.0055 | 0.0384 | 0.8496 | - |
459
+ | 4.6205 | 1400 | 0.0057 | 0.0379 | 0.8466 | - |
460
+ | 4.9505 | 1500 | 0.0057 | 0.0389 | 0.8473 | - |
461
+ | 5.2805 | 1600 | 0.0037 | 0.0391 | 0.8482 | - |
462
+ | 5.6106 | 1700 | 0.0042 | 0.0379 | 0.8477 | - |
463
+ | 5.9406 | 1800 | 0.0039 | 0.0380 | 0.8479 | - |
464
+ | 6.2706 | 1900 | 0.0026 | 0.0390 | 0.8477 | - |
465
+ | 6.6007 | 2000 | 0.0028 | 0.0390 | 0.8475 | - |
466
+ | 6.9307 | 2100 | 0.0031 | 0.0385 | 0.8473 | - |
467
+ | 7.2607 | 2200 | 0.0022 | 0.0393 | 0.8473 | - |
468
+ | 7.5908 | 2300 | 0.0021 | 0.0391 | 0.8470 | - |
469
+ | 7.9208 | 2400 | 0.002 | 0.0387 | 0.8482 | - |
470
+ | 8.2508 | 2500 | 0.0013 | 0.0389 | 0.8482 | - |
471
+ | 8.5809 | 2600 | 0.0014 | 0.0392 | 0.8484 | - |
472
+ | 8.9109 | 2700 | 0.0018 | 0.0390 | 0.8479 | - |
473
+ | 9.2409 | 2800 | 0.0015 | 0.0393 | 0.8480 | - |
474
+ | 9.5710 | 2900 | 0.0012 | 0.0393 | 0.8479 | - |
475
+ | 9.9010 | 3000 | 0.0013 | 0.0394 | 0.8477 | - |
476
+ | 10.0 | 3030 | - | - | - | 0.8454 |
477
+
478
+
479
+ ### Framework Versions
480
+ - Python: 3.11.9
481
+ - Sentence Transformers: 3.0.0
482
+ - Transformers: 4.41.2
483
+ - PyTorch: 2.3.0+cu121
484
+ - Accelerate: 0.30.1
485
+ - Datasets: 2.19.1
486
+ - Tokenizers: 0.19.1
487
+
488
+ ## Citation
489
+
490
+ ### BibTeX
491
+
492
+ #### Sentence Transformers
493
+ ```bibtex
494
+ @inproceedings{reimers-2019-sentence-bert,
495
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
496
+ author = "Reimers, Nils and Gurevych, Iryna",
497
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
498
+ month = "11",
499
+ year = "2019",
500
+ publisher = "Association for Computational Linguistics",
501
+ url = "https://arxiv.org/abs/1908.10084",
502
+ }
503
+ ```
504
+
505
+ <!--
506
+ ## Glossary
507
+
508
+ *Clearly define terms in order to be accessible across audiences.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Authors
513
+
514
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
515
+ -->
516
+
517
+ <!--
518
+ ## Model Card Contact
519
+
520
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
521
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/training_stsbenchmark_pierreinalco-distilbert-base-uncased-sts-2024-06-18_12-10-21/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fa8d03f1afd8a0203f39d7d34190aeff032f273edc7fbecf333e1b2104c7dc2
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff