File size: 7,742 Bytes
7806f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
[2024-04-23 15:11:06,594][hydra][INFO] - 
experiment_group: training
run_name: roberta-base_2024-04-23T15-11-06
seed: 42
model:
  name: roberta-base
  revision: null
  seed: 42
  base_model: roberta-base
estimator:
  accelerator: gpu
  precision: bf16-true
  deterministic: true
  tf32_mode: high
  convert_to_bettertransformer: false
fit:
  max_epochs: 20
  min_epochs: null
  optimizer_kwargs:
    name: adamw
    lr: 3.0e-05
    init_kwargs:
      fused: true
  scheduler_kwargs:
    name: constant_schedule_with_warmup
    num_warmup_steps: 2000
  log_interval: 100
  enable_progress_bar: true
  limit_train_batches: null
data:
  batch_size: 32
  eval_batch_size: 128
  shuffle: true
  replacement: false
  data_seed: 42
  drop_last: false
  num_workers: 8
  pin_memory: true
  persistent_workers: false
  multiprocessing_context: null
  max_length: 512
root_path: /home/pl487/coreset-project
data_path: /home/pl487/coreset-project/data/processed
dataset: mnli
dataset_split: train
evaluation: null
loggers:
  tensorboard:
    _target_: energizer.loggers.TensorBoardLogger
    root_dir: ./
    name: tb_logs
    version: null
callbacks:
  timer:
    _target_: energizer.active_learning.callbacks.Timer
  lr_monitor:
    _target_: energizer.callbacks.lr_monitor.LearningRateMonitor
  model_checkpoint:
    _target_: energizer.callbacks.model_checkpoint.ModelCheckpoint
    dirpath: .checkpoints
    stage: train
    frequency: 1:epoch
user:
  id: pl487

======================================================================
[2024-04-23 15:11:06,595][hydra][INFO] - Seed enabled: 42
[2024-04-23 15:11:06,963][hydra][INFO] - Label distribution:
{<RunningStage.TRAIN: 'train'>: {'0-(entailment)': 130899, '1-(neutral)': 130900, '2-(contradiction)': 130903}}
[2024-04-23 15:11:19,109][hydra][INFO] - Loggers: [<energizer.loggers.tensorboard.TensorBoardLogger object at 0x7f86f05beb00>]
[2024-04-23 15:11:19,110][hydra][INFO] - Callbacks: [<energizer.active_learning.callbacks.Timer object at 0x7f86deae60b0>, <energizer.callbacks.lr_monitor.LearningRateMonitor object at 0x7f86deae6110>, <energizer.callbacks.model_checkpoint.ModelCheckpoint object at 0x7f86deae6620>]
[2024-04-23 15:11:19,113][hydra][INFO] - Model summary:
Total num params: 124.6M
Of which trainable: 124.6M
With a memory footprint of 0.25GB
Total memory allocated 0.77GB
[2024-04-23 15:11:19,754][hydra][INFO] - Dataloading params:
SequenceClassificationDataloaderArgs(batch_size=32, eval_batch_size=128, num_workers=8, pin_memory=True, drop_last=False, persistent_workers=False, shuffle=True, replacement=False, data_seed=42, multiprocessing_context=None, max_length=512)
[2024-04-23 15:11:19,760][hydra][INFO] - Batch:
{<InputKeys.INPUT_IDS: 'input_ids'>: tensor([[    0,  3056, 37463,    14,    18,   761,     9,  4678,   939,  1266,
            51,   214,   190,  3406,    24,     7,     7,   147,   122, 37463,
            14,    51, 26112,    15,  1012,    47,   216,   114,   110,   114,
            47, 37463,    47,   216,    33,   626,    42,    50,   114,    47,
           240,    42, 37463, 37463,    52,   581, 14811,    13,    47,     8,
            47,   218,    75,    33,     7,   582,   201,  3867,    47,    53,
           172,    99,    51,   218,    75,  1137,    47,    16,    14,   114,
            47,   114,    51,   339,    47,   492,   106,    23,   513,    10,
           371,     9,     5,     9,     5,   631,    14,    51,   339,    98,
          1437,   939,   218,    75,   216,    24,    16, 37463,    24,    18,
           562,     7,    28,    55,   265,   122,  1195,    87, 37463,   888,
         37463,  4098,    19,     5,  1846,    87,    19, 37463,  7252,     5,
         37463,  8653,    51,     5,     5,  3969,    32,    95,    11,    24,
            13,     5,   418,  1437,   939,   437,   939,   437,  7013,   939,
           216,   939,   939,  2854,    19,    47,   939,   206,    47,   214,
           588,    47,   214,   182,   235,    14,     5,  3770,   197,   939,
           206,    51,   197,    33,    41,  3871,  1280,     9,    47,   216,
          2085,    51,    64,    33,    10,   367,    53,   939,   206,   144,
             9,   106,   197,    28,    45, 37463,  3969,    11,     5,   754,
             8,    14,    18,   169,   169,    51,   348,  5335,    88,  2302,
            24,    18,   142,     9,     5,     5,   488,   383,    47,   216,
             5, 37482,     8,   960,    53, 37463,    53,   117,   939,   216,
            52,    24,  7252,    52,   214,    11,  4788,     8, 37463,    52,
            33,     5,   276,   631, 22002,   154,     8,     8, 37463,    51,
            32,  6901,   106,    66,   939,  1266,    95,     5,  1675,  2878,
          3645,   631,    51,   905,   106,    66,   142,     9,    51,   218,
            75,    33,   143,   317,     7,   489,     7,   342,   106,    98,
          4909,    14,   115,    47,   216, 37463,  3867, 37463,    57,    10,
           538,  2970,    53, 37463, 37463,   190,     5,   181,  6502,   352,
           410,  2682,   939,  1266,     5,     5,  1669,    14, 13585,   452,
            11,   730,    16,     5,  1802,     8, 14051,    14,   189,    28,
           549,    24,    18,    10,  6279,    50,  2196,    50,  3046,  1493,
          7252,    51,    32,     5,  1980,    14,    32,   164,     7,   582,
             8,    51,    32,     5,    65,    14,    32,   164,     7,  6297,
             8,     5,    97,   621,    47,   216,   114,    51,   582,   114,
            51,   114,    51, 37463,  2237,   106, 37463,     8, 37463,   172,
             5,    47,   216,    86,     5,   488,  1239,    81, 37463,   457,
             5,    86, 37463,    51,  1169,   905,   106,   213,    50,    51,
           120,   160,    19,    10,    10,  3645,   142,    51,   348,    56,
            10,  2470,    14,    47,   216,  2653,    14,    14,    51,  3559,
            75,    70,   561,    77,    51,   222,    24,     2,     2,   100,
           206,    14,    89,   197,    28,    41,  3871,  8985,     9, 14218,
            11,    84,  3770,     4,     2]]), <InputKeys.ATT_MASK: 'attention_mask'>: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), <InputKeys.LABELS: 'labels'>: tensor([0]), <InputKeys.ON_CPU: 'on_cpu'>: {<SpecialKeys.ID: 'uid'>: [221950]}}
[2024-04-23 20:57:35,566][hydra][INFO] - Training complete