File size: 7,742 Bytes
7806f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
[2024-04-23 15:11:06,594][hydra][INFO] -
experiment_group: training
run_name: roberta-base_2024-04-23T15-11-06
seed: 42
model:
name: roberta-base
revision: null
seed: 42
base_model: roberta-base
estimator:
accelerator: gpu
precision: bf16-true
deterministic: true
tf32_mode: high
convert_to_bettertransformer: false
fit:
max_epochs: 20
min_epochs: null
optimizer_kwargs:
name: adamw
lr: 3.0e-05
init_kwargs:
fused: true
scheduler_kwargs:
name: constant_schedule_with_warmup
num_warmup_steps: 2000
log_interval: 100
enable_progress_bar: true
limit_train_batches: null
data:
batch_size: 32
eval_batch_size: 128
shuffle: true
replacement: false
data_seed: 42
drop_last: false
num_workers: 8
pin_memory: true
persistent_workers: false
multiprocessing_context: null
max_length: 512
root_path: /home/pl487/coreset-project
data_path: /home/pl487/coreset-project/data/processed
dataset: mnli
dataset_split: train
evaluation: null
loggers:
tensorboard:
_target_: energizer.loggers.TensorBoardLogger
root_dir: ./
name: tb_logs
version: null
callbacks:
timer:
_target_: energizer.active_learning.callbacks.Timer
lr_monitor:
_target_: energizer.callbacks.lr_monitor.LearningRateMonitor
model_checkpoint:
_target_: energizer.callbacks.model_checkpoint.ModelCheckpoint
dirpath: .checkpoints
stage: train
frequency: 1:epoch
user:
id: pl487
======================================================================
[2024-04-23 15:11:06,595][hydra][INFO] - Seed enabled: 42
[2024-04-23 15:11:06,963][hydra][INFO] - Label distribution:
{<RunningStage.TRAIN: 'train'>: {'0-(entailment)': 130899, '1-(neutral)': 130900, '2-(contradiction)': 130903}}
[2024-04-23 15:11:19,109][hydra][INFO] - Loggers: [<energizer.loggers.tensorboard.TensorBoardLogger object at 0x7f86f05beb00>]
[2024-04-23 15:11:19,110][hydra][INFO] - Callbacks: [<energizer.active_learning.callbacks.Timer object at 0x7f86deae60b0>, <energizer.callbacks.lr_monitor.LearningRateMonitor object at 0x7f86deae6110>, <energizer.callbacks.model_checkpoint.ModelCheckpoint object at 0x7f86deae6620>]
[2024-04-23 15:11:19,113][hydra][INFO] - Model summary:
Total num params: 124.6M
Of which trainable: 124.6M
With a memory footprint of 0.25GB
Total memory allocated 0.77GB
[2024-04-23 15:11:19,754][hydra][INFO] - Dataloading params:
SequenceClassificationDataloaderArgs(batch_size=32, eval_batch_size=128, num_workers=8, pin_memory=True, drop_last=False, persistent_workers=False, shuffle=True, replacement=False, data_seed=42, multiprocessing_context=None, max_length=512)
[2024-04-23 15:11:19,760][hydra][INFO] - Batch:
{<InputKeys.INPUT_IDS: 'input_ids'>: tensor([[ 0, 3056, 37463, 14, 18, 761, 9, 4678, 939, 1266,
51, 214, 190, 3406, 24, 7, 7, 147, 122, 37463,
14, 51, 26112, 15, 1012, 47, 216, 114, 110, 114,
47, 37463, 47, 216, 33, 626, 42, 50, 114, 47,
240, 42, 37463, 37463, 52, 581, 14811, 13, 47, 8,
47, 218, 75, 33, 7, 582, 201, 3867, 47, 53,
172, 99, 51, 218, 75, 1137, 47, 16, 14, 114,
47, 114, 51, 339, 47, 492, 106, 23, 513, 10,
371, 9, 5, 9, 5, 631, 14, 51, 339, 98,
1437, 939, 218, 75, 216, 24, 16, 37463, 24, 18,
562, 7, 28, 55, 265, 122, 1195, 87, 37463, 888,
37463, 4098, 19, 5, 1846, 87, 19, 37463, 7252, 5,
37463, 8653, 51, 5, 5, 3969, 32, 95, 11, 24,
13, 5, 418, 1437, 939, 437, 939, 437, 7013, 939,
216, 939, 939, 2854, 19, 47, 939, 206, 47, 214,
588, 47, 214, 182, 235, 14, 5, 3770, 197, 939,
206, 51, 197, 33, 41, 3871, 1280, 9, 47, 216,
2085, 51, 64, 33, 10, 367, 53, 939, 206, 144,
9, 106, 197, 28, 45, 37463, 3969, 11, 5, 754,
8, 14, 18, 169, 169, 51, 348, 5335, 88, 2302,
24, 18, 142, 9, 5, 5, 488, 383, 47, 216,
5, 37482, 8, 960, 53, 37463, 53, 117, 939, 216,
52, 24, 7252, 52, 214, 11, 4788, 8, 37463, 52,
33, 5, 276, 631, 22002, 154, 8, 8, 37463, 51,
32, 6901, 106, 66, 939, 1266, 95, 5, 1675, 2878,
3645, 631, 51, 905, 106, 66, 142, 9, 51, 218,
75, 33, 143, 317, 7, 489, 7, 342, 106, 98,
4909, 14, 115, 47, 216, 37463, 3867, 37463, 57, 10,
538, 2970, 53, 37463, 37463, 190, 5, 181, 6502, 352,
410, 2682, 939, 1266, 5, 5, 1669, 14, 13585, 452,
11, 730, 16, 5, 1802, 8, 14051, 14, 189, 28,
549, 24, 18, 10, 6279, 50, 2196, 50, 3046, 1493,
7252, 51, 32, 5, 1980, 14, 32, 164, 7, 582,
8, 51, 32, 5, 65, 14, 32, 164, 7, 6297,
8, 5, 97, 621, 47, 216, 114, 51, 582, 114,
51, 114, 51, 37463, 2237, 106, 37463, 8, 37463, 172,
5, 47, 216, 86, 5, 488, 1239, 81, 37463, 457,
5, 86, 37463, 51, 1169, 905, 106, 213, 50, 51,
120, 160, 19, 10, 10, 3645, 142, 51, 348, 56,
10, 2470, 14, 47, 216, 2653, 14, 14, 51, 3559,
75, 70, 561, 77, 51, 222, 24, 2, 2, 100,
206, 14, 89, 197, 28, 41, 3871, 8985, 9, 14218,
11, 84, 3770, 4, 2]]), <InputKeys.ATT_MASK: 'attention_mask'>: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), <InputKeys.LABELS: 'labels'>: tensor([0]), <InputKeys.ON_CPU: 'on_cpu'>: {<SpecialKeys.ID: 'uid'>: [221950]}}
[2024-04-23 20:57:35,566][hydra][INFO] - Training complete
|