update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- sentiment140
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Sentiment140_BERT_5E
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: sentiment140
|
17 |
+
type: sentiment140
|
18 |
+
config: sentiment140
|
19 |
+
split: train
|
20 |
+
args: sentiment140
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.82
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# Sentiment140_BERT_5E
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the sentiment140 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.7061
|
35 |
+
- Accuracy: 0.82
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| 0.6882 | 0.08 | 50 | 0.6047 | 0.7 |
|
67 |
+
| 0.6223 | 0.16 | 100 | 0.5137 | 0.8067 |
|
68 |
+
| 0.5463 | 0.24 | 150 | 0.4573 | 0.8067 |
|
69 |
+
| 0.4922 | 0.32 | 200 | 0.4790 | 0.8 |
|
70 |
+
| 0.4821 | 0.4 | 250 | 0.4207 | 0.8267 |
|
71 |
+
| 0.4985 | 0.48 | 300 | 0.4267 | 0.8067 |
|
72 |
+
| 0.4455 | 0.56 | 350 | 0.4301 | 0.8133 |
|
73 |
+
| 0.469 | 0.64 | 400 | 0.4294 | 0.82 |
|
74 |
+
| 0.4906 | 0.72 | 450 | 0.4059 | 0.8067 |
|
75 |
+
| 0.4006 | 0.8 | 500 | 0.4181 | 0.8133 |
|
76 |
+
| 0.445 | 0.88 | 550 | 0.3948 | 0.8267 |
|
77 |
+
| 0.4302 | 0.96 | 600 | 0.3976 | 0.84 |
|
78 |
+
| 0.4442 | 1.04 | 650 | 0.3887 | 0.8533 |
|
79 |
+
| 0.3424 | 1.12 | 700 | 0.4119 | 0.8267 |
|
80 |
+
| 0.3589 | 1.2 | 750 | 0.4083 | 0.8533 |
|
81 |
+
| 0.3737 | 1.28 | 800 | 0.4253 | 0.8333 |
|
82 |
+
| 0.334 | 1.36 | 850 | 0.4147 | 0.86 |
|
83 |
+
| 0.3637 | 1.44 | 900 | 0.3926 | 0.8533 |
|
84 |
+
| 0.3388 | 1.52 | 950 | 0.4084 | 0.8267 |
|
85 |
+
| 0.3375 | 1.6 | 1000 | 0.4132 | 0.8467 |
|
86 |
+
| 0.3725 | 1.68 | 1050 | 0.3965 | 0.8467 |
|
87 |
+
| 0.3649 | 1.76 | 1100 | 0.3956 | 0.8333 |
|
88 |
+
| 0.3799 | 1.84 | 1150 | 0.3923 | 0.8333 |
|
89 |
+
| 0.3695 | 1.92 | 1200 | 0.4266 | 0.84 |
|
90 |
+
| 0.3233 | 2.0 | 1250 | 0.4225 | 0.8333 |
|
91 |
+
| 0.2313 | 2.08 | 1300 | 0.4672 | 0.8333 |
|
92 |
+
| 0.231 | 2.16 | 1350 | 0.5212 | 0.8133 |
|
93 |
+
| 0.2526 | 2.24 | 1400 | 0.5392 | 0.8067 |
|
94 |
+
| 0.2721 | 2.32 | 1450 | 0.4895 | 0.82 |
|
95 |
+
| 0.2141 | 2.4 | 1500 | 0.5258 | 0.8133 |
|
96 |
+
| 0.2658 | 2.48 | 1550 | 0.5046 | 0.8267 |
|
97 |
+
| 0.2386 | 2.56 | 1600 | 0.4873 | 0.8267 |
|
98 |
+
| 0.2493 | 2.64 | 1650 | 0.4950 | 0.8333 |
|
99 |
+
| 0.2692 | 2.72 | 1700 | 0.5080 | 0.8267 |
|
100 |
+
| 0.2226 | 2.8 | 1750 | 0.5016 | 0.8467 |
|
101 |
+
| 0.2522 | 2.88 | 1800 | 0.5068 | 0.8267 |
|
102 |
+
| 0.2556 | 2.96 | 1850 | 0.4937 | 0.8267 |
|
103 |
+
| 0.2311 | 3.04 | 1900 | 0.5103 | 0.8267 |
|
104 |
+
| 0.1703 | 3.12 | 1950 | 0.5680 | 0.82 |
|
105 |
+
| 0.1744 | 3.2 | 2000 | 0.5501 | 0.82 |
|
106 |
+
| 0.1667 | 3.28 | 2050 | 0.6142 | 0.82 |
|
107 |
+
| 0.1863 | 3.36 | 2100 | 0.6355 | 0.82 |
|
108 |
+
| 0.2543 | 3.44 | 2150 | 0.6000 | 0.8133 |
|
109 |
+
| 0.1565 | 3.52 | 2200 | 0.6618 | 0.8267 |
|
110 |
+
| 0.1531 | 3.6 | 2250 | 0.6595 | 0.8133 |
|
111 |
+
| 0.1915 | 3.68 | 2300 | 0.6647 | 0.8267 |
|
112 |
+
| 0.1601 | 3.76 | 2350 | 0.6729 | 0.8267 |
|
113 |
+
| 0.176 | 3.84 | 2400 | 0.6699 | 0.82 |
|
114 |
+
| 0.1815 | 3.92 | 2450 | 0.6819 | 0.8067 |
|
115 |
+
| 0.1987 | 4.0 | 2500 | 0.6543 | 0.8333 |
|
116 |
+
| 0.1236 | 4.08 | 2550 | 0.6686 | 0.8333 |
|
117 |
+
| 0.1599 | 4.16 | 2600 | 0.6583 | 0.8267 |
|
118 |
+
| 0.1256 | 4.24 | 2650 | 0.6871 | 0.8267 |
|
119 |
+
| 0.1291 | 4.32 | 2700 | 0.6855 | 0.82 |
|
120 |
+
| 0.1198 | 4.4 | 2750 | 0.6901 | 0.82 |
|
121 |
+
| 0.1245 | 4.48 | 2800 | 0.7152 | 0.8267 |
|
122 |
+
| 0.1784 | 4.56 | 2850 | 0.7053 | 0.82 |
|
123 |
+
| 0.1705 | 4.64 | 2900 | 0.7016 | 0.82 |
|
124 |
+
| 0.1265 | 4.72 | 2950 | 0.7013 | 0.82 |
|
125 |
+
| 0.1192 | 4.8 | 3000 | 0.7084 | 0.82 |
|
126 |
+
| 0.174 | 4.88 | 3050 | 0.7062 | 0.82 |
|
127 |
+
| 0.1328 | 4.96 | 3100 | 0.7061 | 0.82 |
|
128 |
+
|
129 |
+
|
130 |
+
### Framework versions
|
131 |
+
|
132 |
+
- Transformers 4.24.0
|
133 |
+
- Pytorch 1.12.1+cu113
|
134 |
+
- Datasets 2.6.1
|
135 |
+
- Tokenizers 0.13.1
|