update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- sentiment140
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Sentiment140_XLNET_5E
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: sentiment140
|
17 |
+
type: sentiment140
|
18 |
+
config: sentiment140
|
19 |
+
split: train
|
20 |
+
args: sentiment140
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.84
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# Sentiment140_XLNET_5E
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the sentiment140 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.3797
|
35 |
+
- Accuracy: 0.84
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 3e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 1
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| 0.6687 | 0.08 | 50 | 0.5194 | 0.76 |
|
67 |
+
| 0.5754 | 0.16 | 100 | 0.4500 | 0.7867 |
|
68 |
+
| 0.5338 | 0.24 | 150 | 0.3725 | 0.8333 |
|
69 |
+
| 0.5065 | 0.32 | 200 | 0.4093 | 0.8133 |
|
70 |
+
| 0.4552 | 0.4 | 250 | 0.3910 | 0.8267 |
|
71 |
+
| 0.5352 | 0.48 | 300 | 0.3888 | 0.82 |
|
72 |
+
| 0.415 | 0.56 | 350 | 0.3887 | 0.8267 |
|
73 |
+
| 0.4716 | 0.64 | 400 | 0.3888 | 0.84 |
|
74 |
+
| 0.4565 | 0.72 | 450 | 0.3619 | 0.84 |
|
75 |
+
| 0.4447 | 0.8 | 500 | 0.3758 | 0.8333 |
|
76 |
+
| 0.4407 | 0.88 | 550 | 0.3664 | 0.8133 |
|
77 |
+
| 0.46 | 0.96 | 600 | 0.3797 | 0.84 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.24.0
|
83 |
+
- Pytorch 1.13.0
|
84 |
+
- Datasets 2.3.2
|
85 |
+
- Tokenizers 0.13.1
|