pig4431 commited on
Commit
7bbaa80
1 Parent(s): ac2d0a8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - sentiment140
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: Sentiment140_XLNET_5E
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: sentiment140
17
+ type: sentiment140
18
+ config: sentiment140
19
+ split: train
20
+ args: sentiment140
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.84
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # Sentiment140_XLNET_5E
31
+
32
+ This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the sentiment140 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.3797
35
+ - Accuracy: 0.84
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 3e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 1
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.6687 | 0.08 | 50 | 0.5194 | 0.76 |
67
+ | 0.5754 | 0.16 | 100 | 0.4500 | 0.7867 |
68
+ | 0.5338 | 0.24 | 150 | 0.3725 | 0.8333 |
69
+ | 0.5065 | 0.32 | 200 | 0.4093 | 0.8133 |
70
+ | 0.4552 | 0.4 | 250 | 0.3910 | 0.8267 |
71
+ | 0.5352 | 0.48 | 300 | 0.3888 | 0.82 |
72
+ | 0.415 | 0.56 | 350 | 0.3887 | 0.8267 |
73
+ | 0.4716 | 0.64 | 400 | 0.3888 | 0.84 |
74
+ | 0.4565 | 0.72 | 450 | 0.3619 | 0.84 |
75
+ | 0.4447 | 0.8 | 500 | 0.3758 | 0.8333 |
76
+ | 0.4407 | 0.88 | 550 | 0.3664 | 0.8133 |
77
+ | 0.46 | 0.96 | 600 | 0.3797 | 0.84 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.24.0
83
+ - Pytorch 1.13.0
84
+ - Datasets 2.3.2
85
+ - Tokenizers 0.13.1