pipyp commited on
Commit
8b16656
·
1 Parent(s): 7f4e497

Setting my little qwen vl free! Go ahead, spread the seeds of early silicon based life.

Browse files
.gitattributes CHANGED
@@ -1,35 +1,5 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
1
  *.bin filter=lfs diff=lfs merge=lfs -text
2
+ *.json filter=lfs diff=lfs merge=lfs -text
3
+ *.md filter=lfs diff=lfs merge=lfs -text
4
+ *.ttf filter=lfs diff=lfs merge=lfs -text
5
+ *.py filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SimSun.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca4da082cd970f0c8abaa79f213ddcbc475f7b5afabcb81b385998f9ebfbb53f
3
+ size 10499104
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": false,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 22016,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 2048,
30
+ "tie_word_embeddings": false,
31
+ "tokenizer_type": "QWenTokenizer",
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.31.0",
34
+ "use_cache": true,
35
+ "use_dynamic_ntk": true,
36
+ "use_flash_attn": false,
37
+ "use_logn_attn": true,
38
+ "visual": {
39
+ "heads": 16,
40
+ "image_size": 448,
41
+ "image_start_id": 151857,
42
+ "layers": 48,
43
+ "mlp_ratio": 4.9231,
44
+ "output_dim": 4096,
45
+ "patch_size": 14,
46
+ "width": 1664
47
+ },
48
+ "vocab_size": 151936
49
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ **kwargs,
39
+ ):
40
+ self.vocab_size = vocab_size
41
+ self.hidden_size = hidden_size
42
+ self.intermediate_size = intermediate_size
43
+ self.num_hidden_layers = num_hidden_layers
44
+ self.num_attention_heads = num_attention_heads
45
+ self.emb_dropout_prob = emb_dropout_prob
46
+ self.attn_dropout_prob = attn_dropout_prob
47
+ self.layer_norm_epsilon = layer_norm_epsilon
48
+ self.initializer_range = initializer_range
49
+ self.scale_attn_weights = scale_attn_weights
50
+ self.use_cache = use_cache
51
+ self.max_position_embeddings = max_position_embeddings
52
+ self.bf16 = bf16
53
+ self.fp16 = fp16
54
+ self.fp32 = fp32
55
+ self.kv_channels = kv_channels
56
+ self.rotary_pct = rotary_pct
57
+ self.rotary_emb_base = rotary_emb_base
58
+ self.use_dynamic_ntk = use_dynamic_ntk
59
+ self.use_logn_attn = use_logn_attn
60
+ self.use_flash_attn = use_flash_attn
61
+ self.no_bias = no_bias
62
+ super().__init__(
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs
65
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "max_window_size": 6144,
7
+ "pad_token_id": 151643,
8
+ "top_k": 0,
9
+ "top_p": 0.3,
10
+ "transformers_version": "4.31.0"
11
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (
41
+ HistoryType,
42
+ make_context,
43
+ decode_tokens,
44
+ get_stop_words_ids,
45
+ StopWordsLogitsProcessor,
46
+ )
47
+ from .visual import VisionTransformer
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CHECKPOINT_FOR_DOC = "qwen"
53
+ _CONFIG_FOR_DOC = "QWenConfig"
54
+
55
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
56
+
57
+ _ERROR_BAD_CHAT_FORMAT = """\
58
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
59
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
60
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
61
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
62
+ """
63
+
64
+ _SENTINEL = object()
65
+ _ERROR_STREAM_IN_CHAT = """\
66
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
67
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
68
+ """
69
+
70
+ apply_rotary_emb_func = None
71
+ rms_norm = None
72
+
73
+
74
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
75
+ def _make_causal_mask(
76
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
77
+ ):
78
+ """
79
+ Make causal mask used for bi-directional self-attention.
80
+ """
81
+ bsz, tgt_len = input_ids_shape
82
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
83
+ mask_cond = torch.arange(mask.size(-1), device=device)
84
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
85
+ mask = mask.to(dtype)
86
+
87
+ if past_key_values_length > 0:
88
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
89
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
90
+
91
+
92
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
93
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
94
+ """
95
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
96
+ """
97
+ bsz, src_len = mask.size()
98
+ tgt_len = tgt_len if tgt_len is not None else src_len
99
+
100
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
101
+
102
+ inverted_mask = 1.0 - expanded_mask
103
+
104
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
105
+
106
+
107
+ class QWenAttention(nn.Module):
108
+ def __init__(self, config):
109
+ super().__init__()
110
+
111
+ max_positions = config.max_position_embeddings
112
+ self.register_buffer(
113
+ "bias",
114
+ torch.tril(
115
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
116
+ ).view(1, 1, max_positions, max_positions),
117
+ persistent=False,
118
+ )
119
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
120
+ self.seq_length = config.seq_length
121
+
122
+ self.hidden_size = config.hidden_size
123
+ self.split_size = config.hidden_size
124
+ self.num_heads = config.num_attention_heads
125
+ self.head_dim = self.hidden_size // self.num_heads
126
+
127
+ self.scale_attn_weights = True
128
+
129
+ self.projection_size = config.kv_channels * config.num_attention_heads
130
+
131
+ assert self.projection_size % config.num_attention_heads == 0
132
+ self.hidden_size_per_attention_head = (
133
+ self.projection_size // config.num_attention_heads
134
+ )
135
+
136
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
137
+
138
+ self.c_proj = nn.Linear(
139
+ config.hidden_size, self.projection_size, bias=not config.no_bias
140
+ )
141
+
142
+ self.is_fp32 = not (config.bf16 or config.fp16)
143
+ self.bf16 = config.bf16
144
+
145
+ if config.rotary_pct == 1.0:
146
+ self.rotary_ndims = None
147
+ else:
148
+ assert config.rotary_pct < 1
149
+ self.rotary_ndims = int(
150
+ self.hidden_size_per_attention_head * config.rotary_pct
151
+ )
152
+ dim = (
153
+ self.rotary_ndims
154
+ if self.rotary_ndims is not None
155
+ else self.hidden_size_per_attention_head
156
+ )
157
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
158
+
159
+ self.use_dynamic_ntk = config.use_dynamic_ntk
160
+ self.use_logn_attn = config.use_logn_attn
161
+
162
+ logn_list = [
163
+ math.log(i, self.seq_length) if i > self.seq_length else 1
164
+ for i in range(1, 32768)
165
+ ]
166
+ self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
167
+ self._ntk_cached = 1.0
168
+
169
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
170
+
171
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
172
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
173
+
174
+ if self.scale_attn_weights:
175
+ attn_weights = attn_weights / torch.full(
176
+ [],
177
+ value.size(-1) ** 0.5,
178
+ dtype=attn_weights.dtype,
179
+ device=attn_weights.device,
180
+ )
181
+
182
+ query_length, key_length = query.size(-2), key.size(-2)
183
+ # causal_mask = self.bias[
184
+ # :, :, key_length - query_length : key_length, :key_length
185
+ # ]
186
+ # mask_value = torch.finfo(attn_weights.dtype).min
187
+ # mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
188
+ # attn_weights.device
189
+ # )
190
+ # attn_weights = torch.where(
191
+ # causal_mask, attn_weights.to(attn_weights.dtype), mask_value
192
+ # )
193
+ attn_weights = attn_weights + attention_mask
194
+
195
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
196
+
197
+ attn_weights = attn_weights.type(value.dtype)
198
+ attn_weights = self.attn_dropout(attn_weights)
199
+
200
+ if head_mask is not None:
201
+ attn_weights = attn_weights * head_mask
202
+
203
+ attn_output = torch.matmul(attn_weights, value)
204
+ attn_output = attn_output.transpose(1, 2)
205
+
206
+ return attn_output, attn_weights
207
+
208
+ def _upcast_and_reordered_attn(
209
+ self, query, key, value, attention_mask=None, head_mask=None
210
+ ):
211
+ bsz, num_heads, q_seq_len, dk = query.size()
212
+ _, _, k_seq_len, _ = key.size()
213
+
214
+ attn_weights = torch.empty(
215
+ bsz * num_heads,
216
+ q_seq_len,
217
+ k_seq_len,
218
+ dtype=torch.float32,
219
+ device=query.device,
220
+ )
221
+
222
+ scale_factor = 1.0
223
+ if self.scale_attn_weights:
224
+ scale_factor /= float(value.size(-1)) ** 0.5
225
+
226
+ with autocast(enabled=False):
227
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
228
+ -1, dk, k_seq_len
229
+ )
230
+ attn_weights = torch.baddbmm(
231
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
232
+ )
233
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
234
+
235
+ query_length, key_length = query.size(-2), key.size(-2)
236
+ causal_mask = self.bias[
237
+ :, :, key_length - query_length : key_length, :key_length
238
+ ]
239
+ mask_value = torch.finfo(attn_weights.dtype).min
240
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
241
+ attn_weights.device
242
+ )
243
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
244
+
245
+ if attention_mask is not None:
246
+ attn_weights = attn_weights + attention_mask
247
+
248
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
249
+
250
+ if attn_weights.dtype != torch.float32:
251
+ raise RuntimeError(
252
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
253
+ )
254
+ attn_weights = attn_weights.type(value.dtype)
255
+ attn_weights = self.attn_dropout(attn_weights)
256
+
257
+ if head_mask is not None:
258
+ attn_weights = attn_weights * head_mask
259
+
260
+ attn_output = torch.matmul(attn_weights, value)
261
+
262
+ return attn_output, attn_weights
263
+
264
+ def _split_heads(self, tensor, num_heads, attn_head_size):
265
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
266
+ tensor = tensor.view(new_shape)
267
+ return tensor
268
+
269
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
270
+ tensor = tensor.contiguous()
271
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
272
+ return tensor.view(new_shape)
273
+
274
+ def forward(
275
+ self,
276
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
277
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
278
+ attention_mask: Optional[torch.FloatTensor] = None,
279
+ head_mask: Optional[torch.FloatTensor] = None,
280
+ encoder_hidden_states: Optional[torch.Tensor] = None,
281
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
282
+ output_attentions: Optional[bool] = False,
283
+ use_cache: Optional[bool] = False,
284
+ ):
285
+
286
+ mixed_x_layer = self.c_attn(hidden_states)
287
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
288
+
289
+ query = self._split_heads(query, self.num_heads, self.head_dim)
290
+ key = self._split_heads(key, self.num_heads, self.head_dim)
291
+ value = self._split_heads(value, self.num_heads, self.head_dim)
292
+
293
+ kv_seq_len = hidden_states.size()[1]
294
+ if layer_past:
295
+ # layer past[0] shape: bs * seq_len * head_num * dim
296
+ kv_seq_len += layer_past[0].shape[1]
297
+ if (
298
+ self.use_dynamic_ntk
299
+ and kv_seq_len == hidden_states.size()[1]
300
+ and not self.training
301
+ ):
302
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
303
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
304
+ ntk_alpha = max(ntk_alpha, 1)
305
+ self._ntk_cached = ntk_alpha
306
+ else:
307
+ ntk_alpha = self._ntk_cached
308
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
309
+ hidden_states.device
310
+ )
311
+
312
+ if rotary_pos_emb is not None:
313
+ if isinstance(rotary_pos_emb, tuple):
314
+ rotary_pos_emb = rotary_pos_emb
315
+ else:
316
+ rotary_pos_emb = (rotary_pos_emb,) * 2
317
+
318
+ if rotary_pos_emb is not None:
319
+ q_pos_emb, k_pos_emb = rotary_pos_emb
320
+ # Slice the pos emb for current inference
321
+ cur_len = query.shape[1]
322
+ q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
323
+ k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
324
+ query = apply_rotary_pos_emb(query, q_pos_emb)
325
+ key = apply_rotary_pos_emb(key, k_pos_emb)
326
+
327
+ if layer_past is not None:
328
+ past_key, past_value = layer_past[0], layer_past[1]
329
+ key = torch.cat((past_key, key), dim=1)
330
+ value = torch.cat((past_value, value), dim=1)
331
+
332
+ if use_cache:
333
+ present = (key, value)
334
+ else:
335
+ present = None
336
+
337
+ if self.use_logn_attn and not self.training:
338
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
339
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
340
+ seq_start = key.size(1) - query.size(1)
341
+ seq_end = key.size(1)
342
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
343
+ query = query * logn_tensor.expand_as(query)
344
+
345
+ query = query.permute(0, 2, 1, 3)
346
+ key = key.permute(0, 2, 1, 3)
347
+ value = value.permute(0, 2, 1, 3)
348
+ attn_output, attn_weight = self._attn(
349
+ query, key, value, attention_mask, head_mask
350
+ )
351
+ context_layer = self._merge_heads(
352
+ attn_output, self.num_heads, self.head_dim
353
+ )
354
+
355
+ attn_output = self.c_proj(context_layer)
356
+ outputs = (attn_output, present)
357
+ if output_attentions:
358
+ outputs += (attn_weight,)
359
+
360
+ return outputs
361
+
362
+
363
+ class QWenMLP(nn.Module):
364
+ def __init__(self, config):
365
+ super().__init__()
366
+ self.w1 = nn.Linear(
367
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
368
+ )
369
+ self.w2 = nn.Linear(
370
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
371
+ )
372
+ ff_dim_in = config.intermediate_size // 2
373
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
374
+
375
+ def forward(self, hidden_states):
376
+ a1 = self.w1(hidden_states)
377
+ a2 = self.w2(hidden_states)
378
+ intermediate_parallel = a1 * F.silu(a2)
379
+ output = self.c_proj(intermediate_parallel)
380
+ return output
381
+
382
+
383
+ class QWenBlock(nn.Module):
384
+ def __init__(self, config):
385
+ super().__init__()
386
+ hidden_size = config.hidden_size
387
+ self.bf16 = config.bf16
388
+
389
+ self.ln_1 = RMSNorm(
390
+ hidden_size,
391
+ eps=config.layer_norm_epsilon,
392
+ )
393
+ self.attn = QWenAttention(config)
394
+ self.ln_2 = RMSNorm(
395
+ hidden_size,
396
+ eps=config.layer_norm_epsilon,
397
+ )
398
+
399
+ self.mlp = QWenMLP(config)
400
+
401
+ def forward(
402
+ self,
403
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
404
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
405
+ attention_mask: Optional[torch.FloatTensor] = None,
406
+ head_mask: Optional[torch.FloatTensor] = None,
407
+ encoder_hidden_states: Optional[torch.Tensor] = None,
408
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
409
+ use_cache: Optional[bool] = False,
410
+ output_attentions: Optional[bool] = False,
411
+ ):
412
+ layernorm_output = self.ln_1(hidden_states)
413
+
414
+ attn_outputs = self.attn(
415
+ layernorm_output,
416
+ layer_past=layer_past,
417
+ attention_mask=attention_mask,
418
+ head_mask=head_mask,
419
+ use_cache=use_cache,
420
+ output_attentions=output_attentions,
421
+ )
422
+ attn_output = attn_outputs[0]
423
+
424
+ outputs = attn_outputs[1:]
425
+
426
+ residual = hidden_states
427
+ layernorm_input = attn_output + residual
428
+
429
+ layernorm_output = self.ln_2(layernorm_input)
430
+
431
+ residual = layernorm_input
432
+ mlp_output = self.mlp(layernorm_output)
433
+ hidden_states = residual + mlp_output
434
+
435
+ if use_cache:
436
+ outputs = (hidden_states,) + outputs
437
+ else:
438
+ outputs = (hidden_states,) + outputs[1:]
439
+
440
+ return outputs
441
+
442
+
443
+ class QWenPreTrainedModel(PreTrainedModel):
444
+ config_class = QWenConfig
445
+ base_model_prefix = "transformer"
446
+ is_parallelizable = False
447
+ supports_gradient_checkpointing = True
448
+ _no_split_modules = ["QWenBlock"]
449
+
450
+ def __init__(self, *inputs, **kwargs):
451
+ super().__init__(*inputs, **kwargs)
452
+
453
+ def _init_weights(self, module):
454
+ """Initialize the weights."""
455
+ if isinstance(module, nn.Linear):
456
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
457
+ if module.bias is not None:
458
+ module.bias.data.zero_()
459
+ elif isinstance(module, nn.Embedding):
460
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
461
+ if module.padding_idx is not None:
462
+ module.weight.data[module.padding_idx].zero_()
463
+ elif isinstance(module, RMSNorm):
464
+ module.weight.data.fill_(1.0)
465
+
466
+ for name, p in module.named_parameters():
467
+ if name == "c_proj.weight":
468
+ p.data.normal_(
469
+ mean=0.0,
470
+ std=(
471
+ self.config.initializer_range
472
+ / math.sqrt(2 * self.config.num_hidden_layers)
473
+ ),
474
+ )
475
+
476
+ def _set_gradient_checkpointing(self, module, value=False):
477
+ if isinstance(module, QWenModel):
478
+ module.gradient_checkpointing = value
479
+
480
+
481
+ class QWenModel(QWenPreTrainedModel):
482
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
483
+
484
+ def __init__(self, config):
485
+ super().__init__(config)
486
+ self.vocab_size = config.vocab_size
487
+ self.num_hidden_layers = config.num_hidden_layers
488
+ self.embed_dim = config.hidden_size
489
+
490
+ self.gradient_checkpointing = False
491
+
492
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
493
+
494
+ self.drop = nn.Dropout(config.emb_dropout_prob)
495
+ self.h = nn.ModuleList(
496
+ [
497
+ QWenBlock(
498
+ config,
499
+ )
500
+ for i in range(config.num_hidden_layers)
501
+ ]
502
+ )
503
+ self.ln_f = RMSNorm(
504
+ self.embed_dim,
505
+ eps=config.layer_norm_epsilon,
506
+ )
507
+
508
+ self.visual = VisionTransformer(**config.visual)
509
+
510
+ self.post_init()
511
+
512
+ def get_input_embeddings(self):
513
+ return self.wte
514
+
515
+ def set_input_embeddings(self, new_embeddings):
516
+ self.wte = new_embeddings
517
+
518
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
519
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
520
+ # create causal mask
521
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
522
+ combined_attention_mask = None
523
+ if input_shape[-1] > 1:
524
+ combined_attention_mask = _make_causal_mask(
525
+ input_shape,
526
+ inputs_embeds.dtype,
527
+ device=inputs_embeds.device,
528
+ past_key_values_length=past_key_values_length,
529
+ )
530
+
531
+ if attention_mask is not None:
532
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
533
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
534
+ inputs_embeds.device
535
+ )
536
+ combined_attention_mask = (
537
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
538
+ )
539
+
540
+ return combined_attention_mask
541
+
542
+
543
+ def forward(
544
+ self,
545
+ input_ids: Optional[torch.LongTensor] = None,
546
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
547
+ attention_mask: Optional[torch.FloatTensor] = None,
548
+ token_type_ids: Optional[torch.LongTensor] = None,
549
+ position_ids: Optional[torch.LongTensor] = None,
550
+ head_mask: Optional[torch.FloatTensor] = None,
551
+ inputs_embeds: Optional[torch.FloatTensor] = None,
552
+ encoder_hidden_states: Optional[torch.Tensor] = None,
553
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
554
+ use_cache: Optional[bool] = None,
555
+ output_attentions: Optional[bool] = None,
556
+ output_hidden_states: Optional[bool] = None,
557
+ return_dict: Optional[bool] = None,
558
+ ):
559
+ if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']):
560
+ bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
561
+ eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1)
562
+ assert (bos_pos[0] == eos_pos[0]).all()
563
+ img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
564
+ images = []
565
+ for i, a, b in img_pos:
566
+ image = input_ids[i][a + 1 : b - 1].tolist()
567
+ image = image[ : image.index(self.config.visual['image_start_id'] + 2)]
568
+ images.append(bytes(image).decode('utf-8'))
569
+
570
+ images = self.visual.encode(images)
571
+ assert images.shape[0] == len(images)
572
+ else:
573
+ images = None
574
+
575
+ output_attentions = (
576
+ output_attentions
577
+ if output_attentions is not None
578
+ else self.config.output_attentions
579
+ )
580
+ output_hidden_states = (
581
+ output_hidden_states
582
+ if output_hidden_states is not None
583
+ else self.config.output_hidden_states
584
+ )
585
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
586
+ return_dict = (
587
+ return_dict if return_dict is not None else self.config.use_return_dict
588
+ )
589
+
590
+ if input_ids is not None and inputs_embeds is not None:
591
+ raise ValueError(
592
+ "You cannot specify both input_ids and inputs_embeds at the same time"
593
+ )
594
+ elif input_ids is not None:
595
+ input_shape = input_ids.size()
596
+ input_ids = input_ids.view(-1, input_shape[-1])
597
+ batch_size = input_ids.shape[0]
598
+ elif inputs_embeds is not None:
599
+ input_shape = inputs_embeds.size()[:-1]
600
+ batch_size = inputs_embeds.shape[0]
601
+ else:
602
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
603
+
604
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
605
+
606
+ if token_type_ids is not None:
607
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
608
+ if position_ids is not None:
609
+ position_ids = position_ids.view(-1, input_shape[-1])
610
+
611
+ if past_key_values is None:
612
+ past_length = 0
613
+ past_key_values = tuple([None] * len(self.h))
614
+ else:
615
+ past_length = past_key_values[0][0].size(-2)
616
+
617
+ if position_ids is None:
618
+ position_ids = torch.arange(
619
+ past_length,
620
+ input_shape[-1] + past_length,
621
+ dtype=torch.long,
622
+ device=device,
623
+ )
624
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
625
+
626
+ encoder_attention_mask = None
627
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
628
+
629
+ if inputs_embeds is None:
630
+ inputs_embeds = self.wte(input_ids)
631
+
632
+ if batch_size <= 0:
633
+ raise ValueError("batch_size has to be defined and > 0")
634
+ attention_mask = self._prepare_decoder_attention_mask(
635
+ attention_mask, input_shape, inputs_embeds, past_length
636
+ )
637
+
638
+ hidden_states = inputs_embeds
639
+
640
+ hidden_states = self.drop(hidden_states)
641
+ if images is not None:
642
+ for idx, (i, a, b) in enumerate(img_pos):
643
+ hidden_states[i][a + 1 : b] = images[idx]
644
+ output_shape = input_shape + (hidden_states.size(-1),)
645
+
646
+ if self.gradient_checkpointing and self.training:
647
+ if use_cache:
648
+ logger.warning_once(
649
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
650
+ )
651
+ use_cache = False
652
+
653
+ presents = () if use_cache else None
654
+ all_self_attentions = () if output_attentions else None
655
+ all_hidden_states = () if output_hidden_states else None
656
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
657
+
658
+ if output_hidden_states:
659
+ all_hidden_states = all_hidden_states + (hidden_states,)
660
+
661
+ if self.gradient_checkpointing and self.training:
662
+
663
+ def create_custom_forward(module):
664
+ def custom_forward(*inputs):
665
+ # None for past_key_value
666
+ return module(*inputs, use_cache, output_attentions)
667
+
668
+ return custom_forward
669
+
670
+ outputs = torch.utils.checkpoint.checkpoint(
671
+ create_custom_forward(block),
672
+ hidden_states,
673
+ None,
674
+ attention_mask,
675
+ head_mask[i],
676
+ encoder_hidden_states,
677
+ encoder_attention_mask,
678
+ )
679
+ else:
680
+ outputs = block(
681
+ hidden_states,
682
+ layer_past=layer_past,
683
+ attention_mask=attention_mask,
684
+ head_mask=head_mask[i],
685
+ encoder_hidden_states=encoder_hidden_states,
686
+ encoder_attention_mask=encoder_attention_mask,
687
+ use_cache=use_cache,
688
+ output_attentions=output_attentions,
689
+ )
690
+
691
+ hidden_states = outputs[0]
692
+ if use_cache is True:
693
+ presents = presents + (outputs[2 if output_attentions else 1],)
694
+
695
+ if output_attentions:
696
+ all_self_attentions = all_self_attentions + (outputs[1],)
697
+
698
+ hidden_states = self.ln_f(hidden_states)
699
+ hidden_states = hidden_states.view(output_shape)
700
+ # Add last hidden state
701
+ if output_hidden_states:
702
+ all_hidden_states = all_hidden_states + (hidden_states,)
703
+
704
+ if not return_dict:
705
+ return tuple(
706
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
707
+ )
708
+
709
+ return BaseModelOutputWithPast(
710
+ last_hidden_state=hidden_states,
711
+ past_key_values=presents,
712
+ hidden_states=all_hidden_states,
713
+ attentions=all_self_attentions,
714
+ )
715
+
716
+
717
+ class QWenLMHeadModel(QWenPreTrainedModel):
718
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
719
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
720
+
721
+ def __init__(self, config):
722
+ super().__init__(config)
723
+ assert (
724
+ config.bf16 + config.fp16 + config.fp32 <= 1
725
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
726
+
727
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
728
+
729
+ if autoset_precision:
730
+ if SUPPORT_BF16:
731
+ logger.warn(
732
+ "The model is automatically converting to bf16 for faster inference. "
733
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
734
+ )
735
+ config.bf16 = True
736
+ elif SUPPORT_FP16:
737
+ logger.warn(
738
+ "The model is automatically converting to fp16 for faster inference. "
739
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
740
+ )
741
+ config.fp16 = True
742
+ else:
743
+ config.fp32 = True
744
+
745
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
746
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
747
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
748
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
749
+ if config.fp32:
750
+ if SUPPORT_BF16:
751
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
752
+ elif SUPPORT_FP16:
753
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
754
+
755
+ self.transformer = QWenModel(config)
756
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
757
+
758
+ if config.bf16:
759
+ self.transformer.bfloat16()
760
+ self.lm_head.bfloat16()
761
+ if config.fp16:
762
+ self.transformer.half()
763
+ self.lm_head.half()
764
+ self.post_init()
765
+
766
+ def get_output_embeddings(self):
767
+ return self.lm_head
768
+
769
+ def set_output_embeddings(self, new_embeddings):
770
+ self.lm_head = new_embeddings
771
+
772
+ def prepare_inputs_for_generation(
773
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
774
+ ):
775
+ token_type_ids = kwargs.get("token_type_ids", None)
776
+ if past_key_values:
777
+ input_ids = input_ids[:, -1].unsqueeze(-1)
778
+ if token_type_ids is not None:
779
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
780
+
781
+ attention_mask = kwargs.get("attention_mask", None)
782
+ position_ids = kwargs.get("position_ids", None)
783
+
784
+ if attention_mask is not None and position_ids is None:
785
+ position_ids = attention_mask.long().cumsum(-1) - 1
786
+ position_ids.masked_fill_(attention_mask == 0, 1)
787
+ if past_key_values:
788
+ position_ids = position_ids[:, -1].unsqueeze(-1)
789
+ else:
790
+ position_ids = None
791
+
792
+ if inputs_embeds is not None and past_key_values is None:
793
+ model_inputs = {"inputs_embeds": inputs_embeds}
794
+ else:
795
+ model_inputs = {"input_ids": input_ids}
796
+
797
+ model_inputs.update(
798
+ {
799
+ "past_key_values": past_key_values,
800
+ "use_cache": kwargs.get("use_cache"),
801
+ "position_ids": position_ids,
802
+ "attention_mask": attention_mask,
803
+ "token_type_ids": token_type_ids,
804
+ }
805
+ )
806
+ return model_inputs
807
+
808
+ def forward(
809
+ self,
810
+ input_ids: Optional[torch.LongTensor] = None,
811
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
812
+ attention_mask: Optional[torch.FloatTensor] = None,
813
+ token_type_ids: Optional[torch.LongTensor] = None,
814
+ position_ids: Optional[torch.LongTensor] = None,
815
+ head_mask: Optional[torch.FloatTensor] = None,
816
+ inputs_embeds: Optional[torch.FloatTensor] = None,
817
+ encoder_hidden_states: Optional[torch.Tensor] = None,
818
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
819
+ labels: Optional[torch.LongTensor] = None,
820
+ use_cache: Optional[bool] = None,
821
+ output_attentions: Optional[bool] = None,
822
+ output_hidden_states: Optional[bool] = None,
823
+ return_dict: Optional[bool] = None,
824
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
825
+
826
+ return_dict = (
827
+ return_dict if return_dict is not None else self.config.use_return_dict
828
+ )
829
+
830
+ transformer_outputs = self.transformer(
831
+ input_ids,
832
+ past_key_values=past_key_values,
833
+ attention_mask=attention_mask,
834
+ token_type_ids=token_type_ids,
835
+ position_ids=position_ids,
836
+ head_mask=head_mask,
837
+ inputs_embeds=inputs_embeds,
838
+ encoder_hidden_states=encoder_hidden_states,
839
+ encoder_attention_mask=encoder_attention_mask,
840
+ use_cache=use_cache,
841
+ output_attentions=output_attentions,
842
+ output_hidden_states=output_hidden_states,
843
+ return_dict=return_dict,
844
+ )
845
+ hidden_states = transformer_outputs[0]
846
+
847
+ lm_logits = self.lm_head(hidden_states)
848
+
849
+ loss = None
850
+ if labels is not None:
851
+ labels = labels.to(lm_logits.device)
852
+ shift_logits = lm_logits[..., :-1, :].contiguous()
853
+ shift_labels = labels[..., 1:].contiguous()
854
+ loss_fct = CrossEntropyLoss()
855
+ loss = loss_fct(
856
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
857
+ )
858
+
859
+ if not return_dict:
860
+ output = (lm_logits,) + transformer_outputs[1:]
861
+ return ((loss,) + output) if loss is not None else output
862
+
863
+ return CausalLMOutputWithPast(
864
+ loss=loss,
865
+ logits=lm_logits,
866
+ past_key_values=transformer_outputs.past_key_values,
867
+ hidden_states=transformer_outputs.hidden_states,
868
+ attentions=transformer_outputs.attentions,
869
+ )
870
+
871
+ @staticmethod
872
+ def _reorder_cache(
873
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
874
+ ) -> Tuple[Tuple[torch.Tensor]]:
875
+
876
+ return tuple(
877
+ tuple(
878
+ past_state.index_select(0, beam_idx.to(past_state.device))
879
+ for past_state in layer_past
880
+ )
881
+ for layer_past in past_key_values
882
+ )
883
+
884
+ def chat(
885
+ self,
886
+ tokenizer: PreTrainedTokenizer,
887
+ query: str,
888
+ history: Optional[HistoryType],
889
+ system: str = "You are a helpful assistant.",
890
+ append_history: bool = True,
891
+ stream: Optional[bool] = _SENTINEL,
892
+ stop_words_ids: Optional[List[List[int]]] = None,
893
+ **kwargs,
894
+ ) -> Tuple[str, HistoryType]:
895
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
896
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
897
+ if history is None:
898
+ history = []
899
+ if stop_words_ids is None:
900
+ stop_words_ids = []
901
+
902
+ max_window_size = kwargs.get('max_window_size', None)
903
+ if max_window_size is None:
904
+ max_window_size = self.generation_config.max_window_size
905
+ raw_text, context_tokens = make_context(
906
+ tokenizer,
907
+ query,
908
+ history=history,
909
+ system=system,
910
+ max_window_size=max_window_size,
911
+ chat_format=self.generation_config.chat_format,
912
+ )
913
+
914
+ stop_words_ids.extend(get_stop_words_ids(
915
+ self.generation_config.chat_format, tokenizer
916
+ ))
917
+ input_ids = torch.tensor([context_tokens]).to(self.device)
918
+ outputs = self.generate(
919
+ input_ids,
920
+ stop_words_ids = stop_words_ids,
921
+ return_dict_in_generate = False,
922
+ **kwargs,
923
+ )
924
+
925
+ response = decode_tokens(
926
+ outputs[0],
927
+ tokenizer,
928
+ raw_text_len=len(raw_text),
929
+ context_length=len(context_tokens),
930
+ chat_format=self.generation_config.chat_format,
931
+ verbose=False,
932
+ errors='replace'
933
+ )
934
+
935
+ if append_history:
936
+ history.append((query, response))
937
+
938
+ return response, history
939
+
940
+ def chat_stream(
941
+ self,
942
+ tokenizer: PreTrainedTokenizer,
943
+ query: str,
944
+ history: Optional[HistoryType],
945
+ system: str = "You are a helpful assistant.",
946
+ stop_words_ids: Optional[List[List[int]]] = None,
947
+ logits_processor: Optional[LogitsProcessorList] = None,
948
+ **kwargs,
949
+ ) -> Generator[str, Any, None]:
950
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
951
+ if history is None:
952
+ history = []
953
+ if stop_words_ids is None:
954
+ stop_words_ids = []
955
+
956
+ max_window_size = kwargs.get('max_window_size', None)
957
+ if max_window_size is None:
958
+ max_window_size = self.generation_config.max_window_size
959
+ raw_text, context_tokens = make_context(
960
+ tokenizer,
961
+ query,
962
+ history=history,
963
+ system=system,
964
+ max_window_size=max_window_size,
965
+ chat_format=self.generation_config.chat_format,
966
+ )
967
+
968
+ stop_words_ids.extend(get_stop_words_ids(
969
+ self.generation_config.chat_format, tokenizer
970
+ ))
971
+ if stop_words_ids is not None:
972
+ stop_words_logits_processor = StopWordsLogitsProcessor(
973
+ stop_words_ids=stop_words_ids,
974
+ eos_token_id=self.generation_config.eos_token_id,
975
+ )
976
+ if logits_processor is None:
977
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
978
+ else:
979
+ logits_processor.append(stop_words_logits_processor)
980
+ input_ids = torch.tensor([context_tokens]).to(self.device)
981
+
982
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
983
+ self.__class__.generate_stream = NewGenerationMixin.generate
984
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
985
+ stream_config = StreamGenerationConfig(**self.generation_config.to_dict(), do_stream=True)
986
+ def stream_generator():
987
+ outputs = []
988
+ for token in self.generate_stream(
989
+ input_ids,
990
+ return_dict_in_generate=False,
991
+ generation_config=stream_config,
992
+ logits_processor=logits_processor,
993
+ seed=-1,
994
+ **kwargs):
995
+ outputs.append(token.item())
996
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
997
+
998
+ return stream_generator()
999
+
1000
+ def generate(
1001
+ self,
1002
+ inputs: Optional[torch.Tensor] = None,
1003
+ generation_config: Optional[GenerationConfig] = None,
1004
+ logits_processor: Optional[LogitsProcessorList] = None,
1005
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1006
+ prefix_allowed_tokens_fn: Optional[
1007
+ Callable[[int, torch.Tensor], List[int]]
1008
+ ] = None,
1009
+ synced_gpus: Optional[bool] = None,
1010
+ assistant_model: Optional["PreTrainedModel"] = None,
1011
+ streamer: Optional["BaseStreamer"] = None,
1012
+ **kwargs,
1013
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1014
+ # Process stop_words_ids.
1015
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1016
+ if stop_words_ids is None and generation_config is not None:
1017
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1018
+ if stop_words_ids is None:
1019
+ stop_words_ids = getattr(self.generation_config, "stop_words_ids", None)
1020
+
1021
+ if stop_words_ids is not None:
1022
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1023
+ stop_words_ids=stop_words_ids,
1024
+ eos_token_id=self.generation_config.eos_token_id,
1025
+ )
1026
+ if logits_processor is None:
1027
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1028
+ else:
1029
+ logits_processor.append(stop_words_logits_processor)
1030
+
1031
+ return super().generate(
1032
+ inputs,
1033
+ generation_config=generation_config,
1034
+ logits_processor=logits_processor,
1035
+ stopping_criteria=stopping_criteria,
1036
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1037
+ synced_gpus=synced_gpus,
1038
+ assistant_model=assistant_model,
1039
+ streamer=streamer,
1040
+ **kwargs,
1041
+ )
1042
+
1043
+
1044
+ class RotaryEmbedding(torch.nn.Module):
1045
+ def __init__(self, dim, base=10000):
1046
+ super().__init__()
1047
+ self.dim = dim
1048
+ self.base = base
1049
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1050
+ if importlib.util.find_spec("einops") is None:
1051
+ raise RuntimeError("einops is required for Rotary Embedding")
1052
+
1053
+ self._rotary_pos_emb_cache = None
1054
+ self._seq_len_cached = 0
1055
+ self._ntk_alpha_cached = 1.0
1056
+
1057
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1058
+ seqlen = max_seq_len + offset
1059
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1060
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1061
+ self.inv_freq = 1.0 / (
1062
+ base
1063
+ ** (
1064
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1065
+ / self.dim
1066
+ )
1067
+ )
1068
+ self._seq_len_cached = max(2 * seqlen, 16)
1069
+ self._ntk_alpha_cached = ntk_alpha
1070
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1071
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1072
+ emb = torch.cat((freqs, freqs), dim=-1)
1073
+ from einops import rearrange
1074
+
1075
+ self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d")
1076
+
1077
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1078
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1079
+ return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len]
1080
+
1081
+
1082
+ def _rotate_half(x):
1083
+ from einops import rearrange
1084
+
1085
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1086
+ x1, x2 = x.unbind(dim=-2)
1087
+ return torch.cat((-x2, x1), dim=-1)
1088
+
1089
+
1090
+ def apply_rotary_pos_emb(t, freqs):
1091
+ if apply_rotary_emb_func is not None and t.is_cuda:
1092
+ t_ = t.float()
1093
+ freqs = freqs.squeeze(0).squeeze(1)
1094
+ cos = freqs[:, : freqs.shape[-1] // 2].cos()
1095
+ sin = freqs[:, : freqs.shape[-1] // 2].sin()
1096
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1097
+ return output
1098
+ else:
1099
+ rot_dim = freqs.shape[-1]
1100
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1101
+ t_ = t_.float()
1102
+ t_pass_ = t_pass_.float()
1103
+ t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
1104
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1105
+
1106
+
1107
+ class RMSNorm(torch.nn.Module):
1108
+ def __init__(self, dim: int, eps: float = 1e-6):
1109
+ super().__init__()
1110
+ self.eps = eps
1111
+ self.weight = nn.Parameter(torch.ones(dim))
1112
+
1113
+ def _norm(self, x):
1114
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1115
+
1116
+ def forward(self, x):
1117
+ if rms_norm is not None and x.is_cuda:
1118
+ return rms_norm(x, self.weight, self.eps)
1119
+ else:
1120
+ output = self._norm(x.float()).type_as(x)
1121
+ return output * self.weight
pytorch_model-00001-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8096d6aefba5b263f06ecd9f19b76e1780fefe2aa7010eab4f1235b18253e8f7
3
+ size 1964070447
pytorch_model-00002-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244b3c40adad8ec6f8e94d59a443607e2d6d11fee4838ca787ea1873ef3c3c20
3
+ size 1933792141
pytorch_model-00003-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fce23c694efdf7b28c152f9ac77ba40a5e114d066708fab8079db0ee967db93
3
+ size 1933792141
pytorch_model-00004-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fcc2950c12804b413838b291bbd302b375a2caf80aa5ec5dd5588e9083675bd
3
+ size 1990406779
pytorch_model-00005-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a83706861cd18b0b7a58a67022b92a13d94d6c740fa003a0c4a44bc18938988
3
+ size 1923281531
pytorch_model-00006-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4af6fbf1423f86de3f88942ec2460641a22570d1c41347625043d9933e51c3ca
3
+ size 1933783675
pytorch_model-00007-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5171efa571c59248f314a4ebfb56d5f4dede27f89a126d17ce5400eb6220d82f
3
+ size 1933792205
pytorch_model-00008-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f79876d7cc162272687daac6dd09778b4bce04895bc44f67c53cc4a9b803fc5
3
+ size 1975364669
pytorch_model-00009-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02b652b95c6dffc2754d2cc3d8166b35c542726a571b979fc2b59417c218f196
3
+ size 1994925011
pytorch_model-00010-of-00010.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23baadda455bbc1f5238bd7b1eb2386e1d17312c8cfaa3f9a3e5bdde44883aa4
3
+ size 1730968463
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,860 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 19313870336
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00010-of-00010.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00010.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00010.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00010.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00010.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00010.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00010.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00010.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00010.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00010.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00010.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00010.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00010.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00010.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00010.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00010.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00010.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00010.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00003-of-00010.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00003-of-00010.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00010.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00010.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00010.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00010.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00010.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00004-of-00010.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00004-of-00010.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00004-of-00010.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00004-of-00010.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00010.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00010.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00010.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00010.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00005-of-00010.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00005-of-00010.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00005-of-00010.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00002-of-00010.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00002-of-00010.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00005-of-00010.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00005-of-00010.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00005-of-00010.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00010.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00006-of-00010.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00006-of-00010.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00006-of-00010.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00006-of-00010.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00006-of-00010.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00006-of-00010.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00006-of-00010.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00006-of-00010.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00007-of-00010.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00007-of-00010.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00007-of-00010.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00007-of-00010.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00007-of-00010.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00007-of-00010.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00007-of-00010.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00007-of-00010.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00002-of-00010.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00010.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00007-of-00010.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00007-of-00010.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00008-of-00010.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00008-of-00010.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00008-of-00010.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00008-of-00010.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00008-of-00010.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00008-of-00010.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00008-of-00010.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00008-of-00010.bin",
215
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
216
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
217
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
218
+ "transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00010.bin",
219
+ "transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00010.bin",
220
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
221
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
222
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
223
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
224
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
225
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
226
+ "transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00010.bin",
227
+ "transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00010.bin",
228
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
229
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
230
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
231
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
232
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
233
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
234
+ "transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00010.bin",
235
+ "transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00010.bin",
236
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
237
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
238
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
239
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
240
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
241
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
242
+ "transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00010.bin",
243
+ "transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00010.bin",
244
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
245
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
246
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
247
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
248
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
249
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
250
+ "transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00010.bin",
251
+ "transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00010.bin",
252
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
253
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
254
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
255
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
256
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
257
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
258
+ "transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00010.bin",
259
+ "transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00010.bin",
260
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
261
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
262
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
263
+ "transformer.ln_f.weight": "pytorch_model-00008-of-00010.bin",
264
+ "transformer.visual.attn_pool.attn.in_proj_bias": "pytorch_model-00010-of-00010.bin",
265
+ "transformer.visual.attn_pool.attn.in_proj_weight": "pytorch_model-00010-of-00010.bin",
266
+ "transformer.visual.attn_pool.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
267
+ "transformer.visual.attn_pool.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
268
+ "transformer.visual.attn_pool.kv_proj.weight": "pytorch_model-00010-of-00010.bin",
269
+ "transformer.visual.attn_pool.ln_kv.bias": "pytorch_model-00010-of-00010.bin",
270
+ "transformer.visual.attn_pool.ln_kv.weight": "pytorch_model-00010-of-00010.bin",
271
+ "transformer.visual.attn_pool.ln_q.bias": "pytorch_model-00010-of-00010.bin",
272
+ "transformer.visual.attn_pool.ln_q.weight": "pytorch_model-00010-of-00010.bin",
273
+ "transformer.visual.attn_pool.pos_embed": "pytorch_model-00010-of-00010.bin",
274
+ "transformer.visual.attn_pool.query": "pytorch_model-00010-of-00010.bin",
275
+ "transformer.visual.conv1.weight": "pytorch_model-00008-of-00010.bin",
276
+ "transformer.visual.ln_post.bias": "pytorch_model-00010-of-00010.bin",
277
+ "transformer.visual.ln_post.weight": "pytorch_model-00010-of-00010.bin",
278
+ "transformer.visual.ln_pre.bias": "pytorch_model-00008-of-00010.bin",
279
+ "transformer.visual.ln_pre.weight": "pytorch_model-00008-of-00010.bin",
280
+ "transformer.visual.positional_embedding": "pytorch_model-00008-of-00010.bin",
281
+ "transformer.visual.proj": "pytorch_model-00008-of-00010.bin",
282
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
283
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
284
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
285
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
286
+ "transformer.visual.transformer.resblocks.0.ln_1.bias": "pytorch_model-00008-of-00010.bin",
287
+ "transformer.visual.transformer.resblocks.0.ln_1.weight": "pytorch_model-00008-of-00010.bin",
288
+ "transformer.visual.transformer.resblocks.0.ln_2.bias": "pytorch_model-00008-of-00010.bin",
289
+ "transformer.visual.transformer.resblocks.0.ln_2.weight": "pytorch_model-00008-of-00010.bin",
290
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
291
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
292
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
293
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
294
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
295
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
296
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
297
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
298
+ "transformer.visual.transformer.resblocks.1.ln_1.bias": "pytorch_model-00008-of-00010.bin",
299
+ "transformer.visual.transformer.resblocks.1.ln_1.weight": "pytorch_model-00008-of-00010.bin",
300
+ "transformer.visual.transformer.resblocks.1.ln_2.bias": "pytorch_model-00008-of-00010.bin",
301
+ "transformer.visual.transformer.resblocks.1.ln_2.weight": "pytorch_model-00008-of-00010.bin",
302
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
303
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
304
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
305
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
306
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
307
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
308
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
309
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
310
+ "transformer.visual.transformer.resblocks.10.ln_1.bias": "pytorch_model-00008-of-00010.bin",
311
+ "transformer.visual.transformer.resblocks.10.ln_1.weight": "pytorch_model-00008-of-00010.bin",
312
+ "transformer.visual.transformer.resblocks.10.ln_2.bias": "pytorch_model-00008-of-00010.bin",
313
+ "transformer.visual.transformer.resblocks.10.ln_2.weight": "pytorch_model-00008-of-00010.bin",
314
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
315
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
316
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
317
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
318
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
319
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
320
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
321
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
322
+ "transformer.visual.transformer.resblocks.11.ln_1.bias": "pytorch_model-00008-of-00010.bin",
323
+ "transformer.visual.transformer.resblocks.11.ln_1.weight": "pytorch_model-00008-of-00010.bin",
324
+ "transformer.visual.transformer.resblocks.11.ln_2.bias": "pytorch_model-00008-of-00010.bin",
325
+ "transformer.visual.transformer.resblocks.11.ln_2.weight": "pytorch_model-00008-of-00010.bin",
326
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
327
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
328
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
329
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
330
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
331
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
332
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
333
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
334
+ "transformer.visual.transformer.resblocks.12.ln_1.bias": "pytorch_model-00008-of-00010.bin",
335
+ "transformer.visual.transformer.resblocks.12.ln_1.weight": "pytorch_model-00008-of-00010.bin",
336
+ "transformer.visual.transformer.resblocks.12.ln_2.bias": "pytorch_model-00008-of-00010.bin",
337
+ "transformer.visual.transformer.resblocks.12.ln_2.weight": "pytorch_model-00008-of-00010.bin",
338
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
339
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
341
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
342
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
343
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
344
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
345
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
346
+ "transformer.visual.transformer.resblocks.13.ln_1.bias": "pytorch_model-00008-of-00010.bin",
347
+ "transformer.visual.transformer.resblocks.13.ln_1.weight": "pytorch_model-00008-of-00010.bin",
348
+ "transformer.visual.transformer.resblocks.13.ln_2.bias": "pytorch_model-00008-of-00010.bin",
349
+ "transformer.visual.transformer.resblocks.13.ln_2.weight": "pytorch_model-00008-of-00010.bin",
350
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
351
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
352
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
353
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
354
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
355
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
356
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
357
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
358
+ "transformer.visual.transformer.resblocks.14.ln_1.bias": "pytorch_model-00008-of-00010.bin",
359
+ "transformer.visual.transformer.resblocks.14.ln_1.weight": "pytorch_model-00008-of-00010.bin",
360
+ "transformer.visual.transformer.resblocks.14.ln_2.bias": "pytorch_model-00008-of-00010.bin",
361
+ "transformer.visual.transformer.resblocks.14.ln_2.weight": "pytorch_model-00008-of-00010.bin",
362
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
363
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
364
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
365
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
366
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
367
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
368
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
369
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
370
+ "transformer.visual.transformer.resblocks.15.ln_1.bias": "pytorch_model-00008-of-00010.bin",
371
+ "transformer.visual.transformer.resblocks.15.ln_1.weight": "pytorch_model-00008-of-00010.bin",
372
+ "transformer.visual.transformer.resblocks.15.ln_2.bias": "pytorch_model-00008-of-00010.bin",
373
+ "transformer.visual.transformer.resblocks.15.ln_2.weight": "pytorch_model-00008-of-00010.bin",
374
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
375
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
376
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
377
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
378
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
379
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
380
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
381
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
382
+ "transformer.visual.transformer.resblocks.16.ln_1.bias": "pytorch_model-00008-of-00010.bin",
383
+ "transformer.visual.transformer.resblocks.16.ln_1.weight": "pytorch_model-00008-of-00010.bin",
384
+ "transformer.visual.transformer.resblocks.16.ln_2.bias": "pytorch_model-00008-of-00010.bin",
385
+ "transformer.visual.transformer.resblocks.16.ln_2.weight": "pytorch_model-00008-of-00010.bin",
386
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
387
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
388
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
389
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
390
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
391
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
392
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
393
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
394
+ "transformer.visual.transformer.resblocks.17.ln_1.bias": "pytorch_model-00008-of-00010.bin",
395
+ "transformer.visual.transformer.resblocks.17.ln_1.weight": "pytorch_model-00008-of-00010.bin",
396
+ "transformer.visual.transformer.resblocks.17.ln_2.bias": "pytorch_model-00008-of-00010.bin",
397
+ "transformer.visual.transformer.resblocks.17.ln_2.weight": "pytorch_model-00008-of-00010.bin",
398
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
399
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
400
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
401
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
402
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
403
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
404
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
405
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
406
+ "transformer.visual.transformer.resblocks.18.ln_1.bias": "pytorch_model-00009-of-00010.bin",
407
+ "transformer.visual.transformer.resblocks.18.ln_1.weight": "pytorch_model-00009-of-00010.bin",
408
+ "transformer.visual.transformer.resblocks.18.ln_2.bias": "pytorch_model-00009-of-00010.bin",
409
+ "transformer.visual.transformer.resblocks.18.ln_2.weight": "pytorch_model-00009-of-00010.bin",
410
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
411
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
412
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
413
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
414
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
415
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
416
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
417
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
418
+ "transformer.visual.transformer.resblocks.19.ln_1.bias": "pytorch_model-00009-of-00010.bin",
419
+ "transformer.visual.transformer.resblocks.19.ln_1.weight": "pytorch_model-00009-of-00010.bin",
420
+ "transformer.visual.transformer.resblocks.19.ln_2.bias": "pytorch_model-00009-of-00010.bin",
421
+ "transformer.visual.transformer.resblocks.19.ln_2.weight": "pytorch_model-00009-of-00010.bin",
422
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
423
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
424
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
425
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
426
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
427
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
428
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
429
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
430
+ "transformer.visual.transformer.resblocks.2.ln_1.bias": "pytorch_model-00008-of-00010.bin",
431
+ "transformer.visual.transformer.resblocks.2.ln_1.weight": "pytorch_model-00008-of-00010.bin",
432
+ "transformer.visual.transformer.resblocks.2.ln_2.bias": "pytorch_model-00008-of-00010.bin",
433
+ "transformer.visual.transformer.resblocks.2.ln_2.weight": "pytorch_model-00008-of-00010.bin",
434
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
435
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
436
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
437
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
438
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
439
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
440
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
441
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
442
+ "transformer.visual.transformer.resblocks.20.ln_1.bias": "pytorch_model-00009-of-00010.bin",
443
+ "transformer.visual.transformer.resblocks.20.ln_1.weight": "pytorch_model-00009-of-00010.bin",
444
+ "transformer.visual.transformer.resblocks.20.ln_2.bias": "pytorch_model-00009-of-00010.bin",
445
+ "transformer.visual.transformer.resblocks.20.ln_2.weight": "pytorch_model-00009-of-00010.bin",
446
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
447
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
448
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
449
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
450
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
451
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
452
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
453
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
454
+ "transformer.visual.transformer.resblocks.21.ln_1.bias": "pytorch_model-00009-of-00010.bin",
455
+ "transformer.visual.transformer.resblocks.21.ln_1.weight": "pytorch_model-00009-of-00010.bin",
456
+ "transformer.visual.transformer.resblocks.21.ln_2.bias": "pytorch_model-00009-of-00010.bin",
457
+ "transformer.visual.transformer.resblocks.21.ln_2.weight": "pytorch_model-00009-of-00010.bin",
458
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
459
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
460
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
461
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
462
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
463
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
464
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
465
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
466
+ "transformer.visual.transformer.resblocks.22.ln_1.bias": "pytorch_model-00009-of-00010.bin",
467
+ "transformer.visual.transformer.resblocks.22.ln_1.weight": "pytorch_model-00009-of-00010.bin",
468
+ "transformer.visual.transformer.resblocks.22.ln_2.bias": "pytorch_model-00009-of-00010.bin",
469
+ "transformer.visual.transformer.resblocks.22.ln_2.weight": "pytorch_model-00009-of-00010.bin",
470
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
471
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
472
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
473
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
474
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
475
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
476
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
477
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
478
+ "transformer.visual.transformer.resblocks.23.ln_1.bias": "pytorch_model-00009-of-00010.bin",
479
+ "transformer.visual.transformer.resblocks.23.ln_1.weight": "pytorch_model-00009-of-00010.bin",
480
+ "transformer.visual.transformer.resblocks.23.ln_2.bias": "pytorch_model-00009-of-00010.bin",
481
+ "transformer.visual.transformer.resblocks.23.ln_2.weight": "pytorch_model-00009-of-00010.bin",
482
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
483
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
484
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
485
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
486
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
487
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
488
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
489
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
490
+ "transformer.visual.transformer.resblocks.24.ln_1.bias": "pytorch_model-00009-of-00010.bin",
491
+ "transformer.visual.transformer.resblocks.24.ln_1.weight": "pytorch_model-00009-of-00010.bin",
492
+ "transformer.visual.transformer.resblocks.24.ln_2.bias": "pytorch_model-00009-of-00010.bin",
493
+ "transformer.visual.transformer.resblocks.24.ln_2.weight": "pytorch_model-00009-of-00010.bin",
494
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
495
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
496
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
497
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
498
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
499
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
500
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
501
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
502
+ "transformer.visual.transformer.resblocks.25.ln_1.bias": "pytorch_model-00009-of-00010.bin",
503
+ "transformer.visual.transformer.resblocks.25.ln_1.weight": "pytorch_model-00009-of-00010.bin",
504
+ "transformer.visual.transformer.resblocks.25.ln_2.bias": "pytorch_model-00009-of-00010.bin",
505
+ "transformer.visual.transformer.resblocks.25.ln_2.weight": "pytorch_model-00009-of-00010.bin",
506
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
507
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
508
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
509
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
510
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
511
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
512
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
513
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
514
+ "transformer.visual.transformer.resblocks.26.ln_1.bias": "pytorch_model-00009-of-00010.bin",
515
+ "transformer.visual.transformer.resblocks.26.ln_1.weight": "pytorch_model-00009-of-00010.bin",
516
+ "transformer.visual.transformer.resblocks.26.ln_2.bias": "pytorch_model-00009-of-00010.bin",
517
+ "transformer.visual.transformer.resblocks.26.ln_2.weight": "pytorch_model-00009-of-00010.bin",
518
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
519
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
520
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
521
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
522
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
523
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
524
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
525
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
526
+ "transformer.visual.transformer.resblocks.27.ln_1.bias": "pytorch_model-00009-of-00010.bin",
527
+ "transformer.visual.transformer.resblocks.27.ln_1.weight": "pytorch_model-00009-of-00010.bin",
528
+ "transformer.visual.transformer.resblocks.27.ln_2.bias": "pytorch_model-00009-of-00010.bin",
529
+ "transformer.visual.transformer.resblocks.27.ln_2.weight": "pytorch_model-00009-of-00010.bin",
530
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
531
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
532
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
533
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
534
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
535
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
536
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
537
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
538
+ "transformer.visual.transformer.resblocks.28.ln_1.bias": "pytorch_model-00009-of-00010.bin",
539
+ "transformer.visual.transformer.resblocks.28.ln_1.weight": "pytorch_model-00009-of-00010.bin",
540
+ "transformer.visual.transformer.resblocks.28.ln_2.bias": "pytorch_model-00009-of-00010.bin",
541
+ "transformer.visual.transformer.resblocks.28.ln_2.weight": "pytorch_model-00009-of-00010.bin",
542
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
543
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
544
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
545
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
546
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
547
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
548
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
549
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
550
+ "transformer.visual.transformer.resblocks.29.ln_1.bias": "pytorch_model-00009-of-00010.bin",
551
+ "transformer.visual.transformer.resblocks.29.ln_1.weight": "pytorch_model-00009-of-00010.bin",
552
+ "transformer.visual.transformer.resblocks.29.ln_2.bias": "pytorch_model-00009-of-00010.bin",
553
+ "transformer.visual.transformer.resblocks.29.ln_2.weight": "pytorch_model-00009-of-00010.bin",
554
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
555
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
556
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
557
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
558
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
559
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
560
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
561
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
562
+ "transformer.visual.transformer.resblocks.3.ln_1.bias": "pytorch_model-00008-of-00010.bin",
563
+ "transformer.visual.transformer.resblocks.3.ln_1.weight": "pytorch_model-00008-of-00010.bin",
564
+ "transformer.visual.transformer.resblocks.3.ln_2.bias": "pytorch_model-00008-of-00010.bin",
565
+ "transformer.visual.transformer.resblocks.3.ln_2.weight": "pytorch_model-00008-of-00010.bin",
566
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
567
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
568
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
569
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
570
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
571
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
572
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
573
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
574
+ "transformer.visual.transformer.resblocks.30.ln_1.bias": "pytorch_model-00009-of-00010.bin",
575
+ "transformer.visual.transformer.resblocks.30.ln_1.weight": "pytorch_model-00009-of-00010.bin",
576
+ "transformer.visual.transformer.resblocks.30.ln_2.bias": "pytorch_model-00009-of-00010.bin",
577
+ "transformer.visual.transformer.resblocks.30.ln_2.weight": "pytorch_model-00009-of-00010.bin",
578
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
579
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
580
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
581
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
582
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
583
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
584
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
585
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
586
+ "transformer.visual.transformer.resblocks.31.ln_1.bias": "pytorch_model-00009-of-00010.bin",
587
+ "transformer.visual.transformer.resblocks.31.ln_1.weight": "pytorch_model-00009-of-00010.bin",
588
+ "transformer.visual.transformer.resblocks.31.ln_2.bias": "pytorch_model-00009-of-00010.bin",
589
+ "transformer.visual.transformer.resblocks.31.ln_2.weight": "pytorch_model-00009-of-00010.bin",
590
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
591
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
592
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
593
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
594
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
595
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
596
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
597
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
598
+ "transformer.visual.transformer.resblocks.32.ln_1.bias": "pytorch_model-00009-of-00010.bin",
599
+ "transformer.visual.transformer.resblocks.32.ln_1.weight": "pytorch_model-00009-of-00010.bin",
600
+ "transformer.visual.transformer.resblocks.32.ln_2.bias": "pytorch_model-00009-of-00010.bin",
601
+ "transformer.visual.transformer.resblocks.32.ln_2.weight": "pytorch_model-00009-of-00010.bin",
602
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
603
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
604
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
605
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
606
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
607
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
608
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
609
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
610
+ "transformer.visual.transformer.resblocks.33.ln_1.bias": "pytorch_model-00009-of-00010.bin",
611
+ "transformer.visual.transformer.resblocks.33.ln_1.weight": "pytorch_model-00009-of-00010.bin",
612
+ "transformer.visual.transformer.resblocks.33.ln_2.bias": "pytorch_model-00009-of-00010.bin",
613
+ "transformer.visual.transformer.resblocks.33.ln_2.weight": "pytorch_model-00009-of-00010.bin",
614
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
615
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
616
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
617
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
618
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
619
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
620
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
621
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
622
+ "transformer.visual.transformer.resblocks.34.ln_1.bias": "pytorch_model-00009-of-00010.bin",
623
+ "transformer.visual.transformer.resblocks.34.ln_1.weight": "pytorch_model-00009-of-00010.bin",
624
+ "transformer.visual.transformer.resblocks.34.ln_2.bias": "pytorch_model-00009-of-00010.bin",
625
+ "transformer.visual.transformer.resblocks.34.ln_2.weight": "pytorch_model-00009-of-00010.bin",
626
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
627
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
628
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
629
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
630
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
631
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
632
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
633
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
634
+ "transformer.visual.transformer.resblocks.35.ln_1.bias": "pytorch_model-00009-of-00010.bin",
635
+ "transformer.visual.transformer.resblocks.35.ln_1.weight": "pytorch_model-00009-of-00010.bin",
636
+ "transformer.visual.transformer.resblocks.35.ln_2.bias": "pytorch_model-00009-of-00010.bin",
637
+ "transformer.visual.transformer.resblocks.35.ln_2.weight": "pytorch_model-00009-of-00010.bin",
638
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
639
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
640
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
641
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
642
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
643
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
644
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
645
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
646
+ "transformer.visual.transformer.resblocks.36.ln_1.bias": "pytorch_model-00009-of-00010.bin",
647
+ "transformer.visual.transformer.resblocks.36.ln_1.weight": "pytorch_model-00009-of-00010.bin",
648
+ "transformer.visual.transformer.resblocks.36.ln_2.bias": "pytorch_model-00009-of-00010.bin",
649
+ "transformer.visual.transformer.resblocks.36.ln_2.weight": "pytorch_model-00009-of-00010.bin",
650
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
651
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
652
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
653
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
654
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
655
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
656
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
657
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
658
+ "transformer.visual.transformer.resblocks.37.ln_1.bias": "pytorch_model-00009-of-00010.bin",
659
+ "transformer.visual.transformer.resblocks.37.ln_1.weight": "pytorch_model-00009-of-00010.bin",
660
+ "transformer.visual.transformer.resblocks.37.ln_2.bias": "pytorch_model-00009-of-00010.bin",
661
+ "transformer.visual.transformer.resblocks.37.ln_2.weight": "pytorch_model-00009-of-00010.bin",
662
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
663
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
664
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
665
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
666
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
667
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
668
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
669
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
670
+ "transformer.visual.transformer.resblocks.38.ln_1.bias": "pytorch_model-00009-of-00010.bin",
671
+ "transformer.visual.transformer.resblocks.38.ln_1.weight": "pytorch_model-00009-of-00010.bin",
672
+ "transformer.visual.transformer.resblocks.38.ln_2.bias": "pytorch_model-00009-of-00010.bin",
673
+ "transformer.visual.transformer.resblocks.38.ln_2.weight": "pytorch_model-00009-of-00010.bin",
674
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
675
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
676
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
677
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
678
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
679
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
680
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
681
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
682
+ "transformer.visual.transformer.resblocks.39.ln_1.bias": "pytorch_model-00009-of-00010.bin",
683
+ "transformer.visual.transformer.resblocks.39.ln_1.weight": "pytorch_model-00009-of-00010.bin",
684
+ "transformer.visual.transformer.resblocks.39.ln_2.bias": "pytorch_model-00009-of-00010.bin",
685
+ "transformer.visual.transformer.resblocks.39.ln_2.weight": "pytorch_model-00009-of-00010.bin",
686
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
687
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
688
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
689
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
690
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
691
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
692
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
693
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
694
+ "transformer.visual.transformer.resblocks.4.ln_1.bias": "pytorch_model-00008-of-00010.bin",
695
+ "transformer.visual.transformer.resblocks.4.ln_1.weight": "pytorch_model-00008-of-00010.bin",
696
+ "transformer.visual.transformer.resblocks.4.ln_2.bias": "pytorch_model-00008-of-00010.bin",
697
+ "transformer.visual.transformer.resblocks.4.ln_2.weight": "pytorch_model-00008-of-00010.bin",
698
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
699
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
700
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
701
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
702
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
703
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
704
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
705
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
706
+ "transformer.visual.transformer.resblocks.40.ln_1.bias": "pytorch_model-00009-of-00010.bin",
707
+ "transformer.visual.transformer.resblocks.40.ln_1.weight": "pytorch_model-00009-of-00010.bin",
708
+ "transformer.visual.transformer.resblocks.40.ln_2.bias": "pytorch_model-00009-of-00010.bin",
709
+ "transformer.visual.transformer.resblocks.40.ln_2.weight": "pytorch_model-00009-of-00010.bin",
710
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
711
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
712
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
713
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
714
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
715
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
716
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
717
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
718
+ "transformer.visual.transformer.resblocks.41.ln_1.bias": "pytorch_model-00009-of-00010.bin",
719
+ "transformer.visual.transformer.resblocks.41.ln_1.weight": "pytorch_model-00009-of-00010.bin",
720
+ "transformer.visual.transformer.resblocks.41.ln_2.bias": "pytorch_model-00009-of-00010.bin",
721
+ "transformer.visual.transformer.resblocks.41.ln_2.weight": "pytorch_model-00009-of-00010.bin",
722
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
723
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
724
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
725
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
726
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
727
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
728
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
729
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
730
+ "transformer.visual.transformer.resblocks.42.ln_1.bias": "pytorch_model-00009-of-00010.bin",
731
+ "transformer.visual.transformer.resblocks.42.ln_1.weight": "pytorch_model-00009-of-00010.bin",
732
+ "transformer.visual.transformer.resblocks.42.ln_2.bias": "pytorch_model-00009-of-00010.bin",
733
+ "transformer.visual.transformer.resblocks.42.ln_2.weight": "pytorch_model-00009-of-00010.bin",
734
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
735
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
736
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
737
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
738
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
739
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
740
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
741
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
742
+ "transformer.visual.transformer.resblocks.43.ln_1.bias": "pytorch_model-00009-of-00010.bin",
743
+ "transformer.visual.transformer.resblocks.43.ln_1.weight": "pytorch_model-00009-of-00010.bin",
744
+ "transformer.visual.transformer.resblocks.43.ln_2.bias": "pytorch_model-00009-of-00010.bin",
745
+ "transformer.visual.transformer.resblocks.43.ln_2.weight": "pytorch_model-00009-of-00010.bin",
746
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
747
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
748
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
749
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
750
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
751
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
752
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
753
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
754
+ "transformer.visual.transformer.resblocks.44.ln_1.bias": "pytorch_model-00010-of-00010.bin",
755
+ "transformer.visual.transformer.resblocks.44.ln_1.weight": "pytorch_model-00010-of-00010.bin",
756
+ "transformer.visual.transformer.resblocks.44.ln_2.bias": "pytorch_model-00010-of-00010.bin",
757
+ "transformer.visual.transformer.resblocks.44.ln_2.weight": "pytorch_model-00010-of-00010.bin",
758
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
759
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
760
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
761
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
762
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
763
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
764
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
765
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
766
+ "transformer.visual.transformer.resblocks.45.ln_1.bias": "pytorch_model-00010-of-00010.bin",
767
+ "transformer.visual.transformer.resblocks.45.ln_1.weight": "pytorch_model-00010-of-00010.bin",
768
+ "transformer.visual.transformer.resblocks.45.ln_2.bias": "pytorch_model-00010-of-00010.bin",
769
+ "transformer.visual.transformer.resblocks.45.ln_2.weight": "pytorch_model-00010-of-00010.bin",
770
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
771
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
772
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
773
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
774
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
775
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
776
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
777
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
778
+ "transformer.visual.transformer.resblocks.46.ln_1.bias": "pytorch_model-00010-of-00010.bin",
779
+ "transformer.visual.transformer.resblocks.46.ln_1.weight": "pytorch_model-00010-of-00010.bin",
780
+ "transformer.visual.transformer.resblocks.46.ln_2.bias": "pytorch_model-00010-of-00010.bin",
781
+ "transformer.visual.transformer.resblocks.46.ln_2.weight": "pytorch_model-00010-of-00010.bin",
782
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
783
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
784
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
785
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
786
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
787
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
788
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
789
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
790
+ "transformer.visual.transformer.resblocks.47.ln_1.bias": "pytorch_model-00010-of-00010.bin",
791
+ "transformer.visual.transformer.resblocks.47.ln_1.weight": "pytorch_model-00010-of-00010.bin",
792
+ "transformer.visual.transformer.resblocks.47.ln_2.bias": "pytorch_model-00010-of-00010.bin",
793
+ "transformer.visual.transformer.resblocks.47.ln_2.weight": "pytorch_model-00010-of-00010.bin",
794
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
795
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
796
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
797
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
798
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
799
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
800
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
801
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
802
+ "transformer.visual.transformer.resblocks.5.ln_1.bias": "pytorch_model-00008-of-00010.bin",
803
+ "transformer.visual.transformer.resblocks.5.ln_1.weight": "pytorch_model-00008-of-00010.bin",
804
+ "transformer.visual.transformer.resblocks.5.ln_2.bias": "pytorch_model-00008-of-00010.bin",
805
+ "transformer.visual.transformer.resblocks.5.ln_2.weight": "pytorch_model-00008-of-00010.bin",
806
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
807
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
808
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
809
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
810
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
811
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
812
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
813
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
814
+ "transformer.visual.transformer.resblocks.6.ln_1.bias": "pytorch_model-00008-of-00010.bin",
815
+ "transformer.visual.transformer.resblocks.6.ln_1.weight": "pytorch_model-00008-of-00010.bin",
816
+ "transformer.visual.transformer.resblocks.6.ln_2.bias": "pytorch_model-00008-of-00010.bin",
817
+ "transformer.visual.transformer.resblocks.6.ln_2.weight": "pytorch_model-00008-of-00010.bin",
818
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
819
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
820
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
821
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
822
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
823
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
824
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
825
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
826
+ "transformer.visual.transformer.resblocks.7.ln_1.bias": "pytorch_model-00008-of-00010.bin",
827
+ "transformer.visual.transformer.resblocks.7.ln_1.weight": "pytorch_model-00008-of-00010.bin",
828
+ "transformer.visual.transformer.resblocks.7.ln_2.bias": "pytorch_model-00008-of-00010.bin",
829
+ "transformer.visual.transformer.resblocks.7.ln_2.weight": "pytorch_model-00008-of-00010.bin",
830
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
831
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
832
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
833
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
834
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
835
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
836
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
837
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
838
+ "transformer.visual.transformer.resblocks.8.ln_1.bias": "pytorch_model-00008-of-00010.bin",
839
+ "transformer.visual.transformer.resblocks.8.ln_1.weight": "pytorch_model-00008-of-00010.bin",
840
+ "transformer.visual.transformer.resblocks.8.ln_2.bias": "pytorch_model-00008-of-00010.bin",
841
+ "transformer.visual.transformer.resblocks.8.ln_2.weight": "pytorch_model-00008-of-00010.bin",
842
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
843
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
844
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
845
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
846
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
847
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
848
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
849
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
850
+ "transformer.visual.transformer.resblocks.9.ln_1.bias": "pytorch_model-00008-of-00010.bin",
851
+ "transformer.visual.transformer.resblocks.9.ln_1.weight": "pytorch_model-00008-of-00010.bin",
852
+ "transformer.visual.transformer.resblocks.9.ln_2.bias": "pytorch_model-00008-of-00010.bin",
853
+ "transformer.visual.transformer.resblocks.9.ln_2.weight": "pytorch_model-00008-of-00010.bin",
854
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
855
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
856
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
857
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
858
+ "transformer.wte.weight": "pytorch_model-00001-of-00010.bin"
859
+ }
860
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set(tokenizer.IMAGE_ST)
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.IMAGE_ST))
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ if turn_response is not None:
151
+ response_text, response_tokens_part = _tokenize_str(
152
+ "assistant", turn_response
153
+ )
154
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
155
+
156
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
157
+ prev_chat = (
158
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
159
+ )
160
+ else:
161
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens
162
+ prev_chat = f"\n{im_start}{query_text}{im_end}\n"
163
+
164
+ current_context_size = (
165
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
166
+ )
167
+ if current_context_size < max_window_size:
168
+ context_tokens = next_context_tokens + context_tokens
169
+ raw_text = prev_chat + raw_text
170
+ else:
171
+ break
172
+
173
+ context_tokens = system_tokens + context_tokens
174
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
175
+ context_tokens += (
176
+ nl_tokens
177
+ + im_start_tokens
178
+ + _tokenize_str("user", query)[1]
179
+ + im_end_tokens
180
+ + nl_tokens
181
+ + im_start_tokens
182
+ + tokenizer.encode("assistant")
183
+ + nl_tokens
184
+ )
185
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
186
+
187
+ elif chat_format == "raw":
188
+ raw_text = query
189
+ context_tokens = tokenizer.encode(raw_text)
190
+ else:
191
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
192
+
193
+ return raw_text, context_tokens
194
+
195
+
196
+ def _decode_default(
197
+ tokens: List[int],
198
+ *,
199
+ stop_words: List[str],
200
+ eod_words: List[str],
201
+ tokenizer: PreTrainedTokenizer,
202
+ raw_text_len: int,
203
+ verbose: bool = False,
204
+ return_end_reason: bool = False,
205
+ errors: str='replace',
206
+ ):
207
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
208
+ if verbose:
209
+ print("\nRaw Generate: ", trim_decode_tokens)
210
+
211
+ end_reason = f"Gen length {len(tokens)}"
212
+ for stop_word in stop_words:
213
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
214
+ for eod_word in eod_words:
215
+ if eod_word in trim_decode_tokens:
216
+ end_reason = f"Gen {eod_word!r}"
217
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
218
+ trim_decode_tokens = trim_decode_tokens.strip()
219
+ if verbose:
220
+ print("\nEnd Reason:", end_reason)
221
+ print("\nGenerate: ", trim_decode_tokens)
222
+
223
+ if return_end_reason:
224
+ return trim_decode_tokens, end_reason
225
+ else:
226
+ return trim_decode_tokens
227
+
228
+
229
+ def _decode_chatml(
230
+ tokens: List[int],
231
+ *,
232
+ stop_words: List[str],
233
+ eod_token_ids: List[int],
234
+ tokenizer: PreTrainedTokenizer,
235
+ raw_text_len: int,
236
+ context_length: int,
237
+ verbose: bool = False,
238
+ return_end_reason: bool = False,
239
+ errors: str='replace'
240
+ ):
241
+ end_reason = f"Gen length {len(tokens)}"
242
+ eod_token_idx = context_length
243
+ for eod_token_idx in range(context_length, len(tokens)):
244
+ if tokens[eod_token_idx] in eod_token_ids:
245
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
246
+ break
247
+
248
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
249
+ if verbose:
250
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
251
+ print("\nRaw Generate:", trim_decode_tokens)
252
+ print("\nEnd Reason:", end_reason)
253
+ for stop_word in stop_words:
254
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
255
+ trim_decode_tokens = trim_decode_tokens.strip()
256
+ if verbose:
257
+ print("\nGenerate:", trim_decode_tokens)
258
+
259
+ if return_end_reason:
260
+ return trim_decode_tokens, end_reason
261
+ else:
262
+ return trim_decode_tokens
263
+
264
+
265
+ def decode_tokens(
266
+ tokens: Union[torch.LongTensor, TokensType],
267
+ tokenizer: PreTrainedTokenizer,
268
+ raw_text_len: int,
269
+ context_length: int,
270
+ chat_format: str,
271
+ verbose: bool = False,
272
+ return_end_reason: bool = False,
273
+ errors: str="replace",
274
+ ) -> str:
275
+ if torch.is_tensor(tokens):
276
+ tokens = tokens.cpu().numpy().tolist()
277
+
278
+ if chat_format == "chatml":
279
+ return _decode_chatml(
280
+ tokens,
281
+ stop_words=[],
282
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
283
+ tokenizer=tokenizer,
284
+ raw_text_len=raw_text_len,
285
+ context_length=context_length,
286
+ verbose=verbose,
287
+ return_end_reason=return_end_reason,
288
+ errors=errors,
289
+ )
290
+ elif chat_format == "raw":
291
+ return _decode_default(
292
+ tokens,
293
+ stop_words=["<|endoftext|>"],
294
+ eod_words=["<|endoftext|>"],
295
+ tokenizer=tokenizer,
296
+ raw_text_len=raw_text_len,
297
+ verbose=verbose,
298
+ return_end_reason=return_end_reason,
299
+ errors=errors,
300
+ )
301
+ else:
302
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
303
+
304
+
305
+ class StopWordsLogitsProcessor(LogitsProcessor):
306
+ """
307
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
308
+
309
+ Args:
310
+ stop_words_ids (:obj:`List[List[int]]`):
311
+ List of list of token ids of stop ids. In order to get the tokens of the words
312
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
313
+ add_prefix_space=True).input_ids`.
314
+ eos_token_id (:obj:`int`):
315
+ The id of the `end-of-sequence` token.
316
+ """
317
+
318
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
319
+
320
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
323
+ )
324
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
325
+ raise ValueError(
326
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
327
+ )
328
+ if any(
329
+ any(
330
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
331
+ for token_id in stop_word_ids
332
+ )
333
+ for stop_word_ids in stop_words_ids
334
+ ):
335
+ raise ValueError(
336
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
337
+ )
338
+
339
+ self.stop_words_ids = list(
340
+ filter(
341
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
342
+ )
343
+ )
344
+ self.eos_token_id = eos_token_id
345
+ for stop_token_seq in self.stop_words_ids:
346
+ assert (
347
+ len(stop_token_seq) > 0
348
+ ), "Stop words token sequences {} cannot have an empty list".format(
349
+ stop_words_ids
350
+ )
351
+
352
+ def __call__(
353
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
354
+ ) -> torch.FloatTensor:
355
+ stopped_samples = self._calc_stopped_samples(input_ids)
356
+ for i, should_stop in enumerate(stopped_samples):
357
+ if should_stop:
358
+ scores[i, self.eos_token_id] = float(2**15)
359
+ return scores
360
+
361
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
362
+ if len(tokens) == 0:
363
+ # if bad word tokens is just one token always ban it
364
+ return True
365
+ elif len(tokens) > len(prev_tokens):
366
+ # if bad word tokens are longer then prev input_ids they can't be equal
367
+ return False
368
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
369
+ # if tokens match
370
+ return True
371
+ else:
372
+ return False
373
+
374
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
375
+ stopped_samples = []
376
+ for prev_input_ids_slice in prev_input_ids:
377
+ match = False
378
+ for stop_token_seq in self.stop_words_ids:
379
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
380
+ # if tokens do not match continue
381
+ match = True
382
+ break
383
+ stopped_samples.append(match)
384
+
385
+ return stopped_samples
386
+
387
+
388
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
389
+ """This function has been mostly taken from huggingface conversational
390
+ ai code at
391
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
392
+ conversational-ai-with-transfer-learning-2d818ac26313"""
393
+
394
+ if top_k > 0:
395
+ # Remove all tokens with a probability less than the
396
+ # last token of the top-k
397
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
398
+ logits[indices_to_remove] = filter_value
399
+
400
+ if top_p > 0.0:
401
+ # Cconvert to 1D
402
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
403
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
404
+
405
+ # Remove tokens with cumulative probability above the threshold
406
+ sorted_indices_to_remove = cumulative_probs > top_p
407
+ # Shift the indices to the right to keep also the first token
408
+ # above the threshold
409
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
410
+ sorted_indices_to_remove[..., 0] = 0
411
+ for i in range(sorted_indices.size(0)):
412
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
413
+ logits[i][indices_to_remove] = filter_value
414
+
415
+ return logits
416
+
417
+
418
+ def switch(val1, val2, boolean):
419
+ boolean = boolean.type_as(val1)
420
+ return (1 - boolean) * val1 + boolean * val2
tokenization_qwen.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import requests
12
+ import unicodedata
13
+ from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
14
+
15
+ import tiktoken
16
+ import numpy as np
17
+ from PIL import Image
18
+ from PIL import ImageFont
19
+ from PIL import ImageDraw
20
+ from transformers import PreTrainedTokenizer, AddedToken
21
+ from transformers.utils import try_to_load_from_cache
22
+
23
+ import matplotlib.pyplot as plt
24
+ import matplotlib.colors as mcolors
25
+ from matplotlib.font_manager import FontProperties
26
+
27
+ logger = logging.getLogger(__name__)
28
+
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
31
+
32
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
33
+ ENDOFTEXT = "<|endoftext|>"
34
+ IMSTART = "<|im_start|>"
35
+ IMEND = "<|im_end|>"
36
+ # as the default behavior is changed to allow special tokens in
37
+ # regular texts, the surface forms of special tokens need to be
38
+ # as different as possible to minimize the impact
39
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
40
+ SPECIAL_TOKENS = (
41
+ ENDOFTEXT,
42
+ IMSTART,
43
+ IMEND,
44
+ ) + EXTRAS
45
+ IMG_TOKEN_SPAN = 256
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+ def _list_find(
57
+ input_list: List[Any],
58
+ candidates: Tuple[Any],
59
+ start: int = 0,
60
+ ):
61
+ for i in range(start, len(input_list)):
62
+ if input_list[i] in candidates:
63
+ return i
64
+ return -1
65
+
66
+ def _replace_closed_tag(
67
+ input_tokens: List[Any],
68
+ start_tags: Union[Any, Tuple[Any]],
69
+ end_tags: Union[Any, Tuple[Any]],
70
+ inclusive_replace_func: Callable,
71
+ exclusive_replace_func: Callable = lambda x: x,
72
+ ):
73
+ if isinstance(start_tags, (str, int)):
74
+ start_tags = (start_tags,)
75
+ if isinstance(end_tags, (str, int)):
76
+ end_tags = (end_tags,)
77
+ assert len(start_tags) == len(end_tags)
78
+
79
+ output_tokens = []
80
+ end = 0
81
+ while True:
82
+ start = _list_find(input_tokens, start_tags, end)
83
+ if start == -1:
84
+ break
85
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
86
+ tag_idx = start_tags.index(input_tokens[start])
87
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
88
+ if end == -1:
89
+ raise ValueError("Unclosed image token")
90
+ output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
91
+ end += 1
92
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
93
+ return output_tokens
94
+
95
+ class QWenTokenizer(PreTrainedTokenizer):
96
+ """QWen tokenizer."""
97
+
98
+ vocab_files_names = VOCAB_FILES_NAMES
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_file,
103
+ errors="replace",
104
+ image_start_tag='<img>',
105
+ image_end_tag='</img>',
106
+ image_pad_tag='<imgpad>',
107
+ ref_start_tag='<ref>',
108
+ ref_end_tag='</ref>',
109
+ box_start_tag='<box>',
110
+ box_end_tag='</box>',
111
+ quad_start_tag='<quad>',
112
+ quad_end_tag='</quad>',
113
+ **kwargs,
114
+ ):
115
+ super().__init__(**kwargs)
116
+ self.image_start_tag = image_start_tag
117
+ self.image_end_tag = image_end_tag
118
+ self.image_pad_tag = image_pad_tag
119
+ self.ref_start_tag = ref_start_tag
120
+ self.ref_end_tag = ref_end_tag
121
+ self.box_start_tag = box_start_tag
122
+ self.box_end_tag = box_end_tag
123
+ self.quad_start_tag = quad_start_tag
124
+ self.quad_end_tag = quad_end_tag
125
+ self.IMAGE_ST = (
126
+ ref_start_tag, ref_end_tag,
127
+ box_start_tag, box_end_tag,
128
+ quad_start_tag, quad_end_tag,
129
+ image_start_tag, image_end_tag,
130
+ image_pad_tag
131
+ )
132
+
133
+ self.errors = errors # how to handle errors in decoding
134
+
135
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
136
+ self.special_tokens = {
137
+ token: index
138
+ for index, token in enumerate(
139
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
140
+ )
141
+ }
142
+ self.img_start_id = self.special_tokens[self.image_start_tag]
143
+ self.img_end_id = self.special_tokens[self.image_end_tag]
144
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
145
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
146
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
147
+ self.box_start_id = self.special_tokens[self.box_start_tag]
148
+ self.box_end_id = self.special_tokens[self.box_end_tag]
149
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
150
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
151
+
152
+ enc = tiktoken.Encoding(
153
+ "Qwen",
154
+ pat_str=PAT_STR,
155
+ mergeable_ranks=self.mergeable_ranks,
156
+ special_tokens=self.special_tokens,
157
+ )
158
+ assert (
159
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
160
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
161
+
162
+ self.decoder = {
163
+ v: k for k, v in self.mergeable_ranks.items()
164
+ } # type: dict[int, bytes|str]
165
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
166
+
167
+ self.tokenizer = enc # type: tiktoken.Encoding
168
+
169
+ self.eod_id = self.tokenizer.eot_token
170
+ self.im_start_id = self.special_tokens[IMSTART]
171
+ self.im_end_id = self.special_tokens[IMEND]
172
+
173
+ def __len__(self) -> int:
174
+ return self.tokenizer.n_vocab
175
+
176
+ def get_vocab(self) -> Dict[bytes, int]:
177
+ return self.mergeable_ranks
178
+
179
+ def convert_tokens_to_ids(
180
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
181
+ ) -> List[int]:
182
+ ids = []
183
+ if isinstance(tokens, (str, bytes)):
184
+ if tokens in self.special_tokens:
185
+ return self.special_tokens[tokens]
186
+ else:
187
+ return self.mergeable_ranks.get(tokens)
188
+ for token in tokens:
189
+ if token in self.special_tokens:
190
+ ids.append(self.special_tokens[token])
191
+ else:
192
+ ids.append(self.mergeable_ranks.get(token))
193
+ return ids
194
+
195
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
196
+ if not special_tokens and new_tokens:
197
+ raise ValueError('Adding regular tokens is not supported')
198
+ for token in new_tokens:
199
+ surface_form = token.content if isinstance(token, AddedToken) else token
200
+ if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
201
+ raise ValueError('Adding unknown special tokens is not supported')
202
+ return 0
203
+
204
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
205
+ """
206
+ Save only the vocabulary of the tokenizer (vocabulary).
207
+
208
+ Returns:
209
+ `Tuple(str)`: Paths to the files saved.
210
+ """
211
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
212
+ with open(file_path, "w", encoding="utf8") as w:
213
+ for k, v in self.mergeable_ranks.items():
214
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
215
+ w.write(line)
216
+ return (file_path,)
217
+
218
+ def tokenize(
219
+ self,
220
+ text: str,
221
+ allowed_special: Union[Set, str] = "all",
222
+ disallowed_special: Union[Collection, str] = (),
223
+ **kwargs,
224
+ ) -> List[Union[bytes, str]]:
225
+ """
226
+ Converts a string in a sequence of tokens.
227
+
228
+ Args:
229
+ text (`str`):
230
+ The sequence to be encoded.
231
+ allowed_special (`Literal["all"]` or `set`):
232
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
233
+ Default to "all".
234
+ disallowed_special (`Literal["all"]` or `Collection`):
235
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
236
+ Default to an empty tuple.
237
+
238
+ kwargs (additional keyword arguments, *optional*):
239
+ Will be passed to the underlying model specific encode method.
240
+
241
+ Returns:
242
+ `List[bytes|str]`: The list of tokens.
243
+ """
244
+ tokens = []
245
+ text = unicodedata.normalize("NFC", text)
246
+
247
+ # this implementation takes a detour: text -> token id -> token surface forms
248
+ for t in self.tokenizer.encode(
249
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
250
+ ):
251
+ tokens.append(self.decoder[t])
252
+
253
+ def _encode_imgurl(img_tokens):
254
+ assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
255
+ img_tokens = img_tokens[1:-1]
256
+ img_url = b''.join(img_tokens)
257
+ out_img_tokens = list(map(self.decoder.get, img_url))
258
+ if len(out_img_tokens) > IMG_TOKEN_SPAN:
259
+ raise ValueError("The content in {}..{} is too long".format(
260
+ self.image_start_tag, self.image_end_tag))
261
+ out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
262
+ out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
263
+ return out_img_tokens
264
+
265
+ return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
266
+
267
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
268
+ """
269
+ Converts a sequence of tokens in a single string.
270
+ """
271
+ text = ""
272
+ temp = b""
273
+ for t in tokens:
274
+ if isinstance(t, str):
275
+ if temp:
276
+ text += temp.decode("utf-8", errors=self.errors)
277
+ temp = b""
278
+ text += t
279
+ elif isinstance(t, bytes):
280
+ temp += t
281
+ else:
282
+ raise TypeError("token should only be of type types or str")
283
+ if temp:
284
+ text += temp.decode("utf-8", errors=self.errors)
285
+ return text
286
+
287
+ @property
288
+ def vocab_size(self):
289
+ return self.tokenizer.n_vocab
290
+
291
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
292
+ """Converts an id to a token, special tokens included"""
293
+ if index in self.decoder:
294
+ return self.decoder[index]
295
+ raise ValueError("unknown ids")
296
+
297
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
298
+ """Converts a token to an id using the vocab, special tokens included"""
299
+ if token in self.special_tokens:
300
+ return self.special_tokens[token]
301
+ if token in self.mergeable_ranks:
302
+ return self.mergeable_ranks[token]
303
+ raise ValueError("unknown token")
304
+
305
+ def _tokenize(self, text: str, **kwargs):
306
+ """
307
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
308
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
309
+
310
+ Do NOT take care of added tokens.
311
+ """
312
+ raise NotImplementedError
313
+
314
+ def _decode(
315
+ self,
316
+ token_ids: Union[int, List[int]],
317
+ skip_special_tokens: bool = False,
318
+ errors: str = None,
319
+ **kwargs,
320
+ ) -> str:
321
+ if isinstance(token_ids, int):
322
+ token_ids = [token_ids]
323
+
324
+ def _decode_imgurl(img_token_ids):
325
+ assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
326
+ img_token_ids = img_token_ids[1:-1]
327
+ img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
328
+ img_url = bytes(img_token_ids).decode('utf-8')
329
+ return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
330
+
331
+ token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
332
+
333
+ if skip_special_tokens:
334
+ token_ids = [i for i in token_ids if i < self.eod_id]
335
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
336
+
337
+ def to_list_format(self, text: str):
338
+ text = unicodedata.normalize("NFC", text)
339
+ token_ids = self.tokenizer.encode(
340
+ text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
341
+
342
+ def _encode_vl_info(tokens):
343
+ if len(tokens) == 0:
344
+ return []
345
+ if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
346
+ key = 'image'
347
+ elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
348
+ key = 'ref'
349
+ elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
350
+ key = 'box'
351
+ elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
352
+ key = 'quad'
353
+ else:
354
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
355
+ return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
356
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
357
+ val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
358
+ return [{key: val}]
359
+
360
+ return _replace_closed_tag(
361
+ token_ids,
362
+ (self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
363
+ (self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
364
+ _encode_vl_info,
365
+ _encode_vl_info,
366
+ )
367
+
368
+ def from_list_format(self, list_format: List[Dict]):
369
+ text = ''
370
+ num_images = 0
371
+ for ele in list_format:
372
+ if 'image' in ele:
373
+ num_images += 1
374
+ text += f'Picture {num_images}:'
375
+ text += self.image_start_tag + ele['image'] + self.image_end_tag
376
+ text += '\n'
377
+ elif 'text' in ele:
378
+ text += ele['text']
379
+ elif 'box' in ele:
380
+ if 'ref' in ele:
381
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
382
+ for box in ele['box']:
383
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
384
+ else:
385
+ raise ValueError("Unsupport element: " + str(ele))
386
+ return text
387
+
388
+ def _fetch_latest_picture(self, response, history):
389
+ if history is None:
390
+ history = []
391
+ _history = history + [(response, None)]
392
+ for q, r in _history[::-1]:
393
+ for ele in self.to_list_format(q)[::-1]:
394
+ if 'image' in ele:
395
+ return ele['image']
396
+ return None
397
+
398
+ def _fetch_all_box_with_ref(self, text):
399
+ list_format = self.to_list_format(text)
400
+ output = []
401
+ for i, ele in enumerate(list_format):
402
+ if 'box' in ele:
403
+ bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
404
+ assert len(bbox) == 4
405
+ output.append({'box': bbox})
406
+ if i > 0 and 'ref' in list_format[i-1]:
407
+ output[-1]['ref'] = list_format[i-1]['ref'].strip()
408
+ return output
409
+
410
+ def draw_bbox_on_latest_picture(
411
+ self,
412
+ response,
413
+ history=None,
414
+ ) -> Optional[Image.Image]:
415
+ image = self._fetch_latest_picture(response, history)
416
+ if image is None:
417
+ return None
418
+ if image.startswith("http://") or image.startswith("https://"):
419
+ image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
420
+ h, w = image.height, image.width
421
+ else:
422
+ image = plt.imread(image)
423
+ h, w = image.shape[0], image.shape[1]
424
+ visualizer = Visualizer(image)
425
+
426
+ boxes = self._fetch_all_box_with_ref(response)
427
+ if not boxes:
428
+ return None
429
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
430
+ for box in boxes:
431
+ if 'ref' in box: # random new color for new refexps
432
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
433
+ x1, y1, x2, y2 = box['box']
434
+ x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
435
+ visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
436
+ if 'ref' in box:
437
+ visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
438
+ return visualizer.output
439
+
440
+
441
+ import colorsys
442
+ import logging
443
+ import math
444
+ import numpy as np
445
+ import matplotlib as mpl
446
+ import matplotlib.colors as mplc
447
+ import matplotlib.figure as mplfigure
448
+ import torch
449
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
450
+ from PIL import Image
451
+ import random
452
+
453
+ logger = logging.getLogger(__name__)
454
+
455
+
456
+ class VisImage:
457
+ def __init__(self, img, scale=1.0):
458
+ self.img = img
459
+ self.scale = scale
460
+ self.width, self.height = img.shape[1], img.shape[0]
461
+ self._setup_figure(img)
462
+
463
+ def _setup_figure(self, img):
464
+ fig = mplfigure.Figure(frameon=False)
465
+ self.dpi = fig.get_dpi()
466
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
467
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
468
+ fig.set_size_inches(
469
+ (self.width * self.scale + 1e-2) / self.dpi,
470
+ (self.height * self.scale + 1e-2) / self.dpi,
471
+ )
472
+ self.canvas = FigureCanvasAgg(fig)
473
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
474
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
475
+ ax.axis("off")
476
+ self.fig = fig
477
+ self.ax = ax
478
+ self.reset_image(img)
479
+
480
+ def reset_image(self, img):
481
+ img = img.astype("uint8")
482
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
483
+
484
+ def save(self, filepath):
485
+ self.fig.savefig(filepath)
486
+
487
+ def get_image(self):
488
+ canvas = self.canvas
489
+ s, (width, height) = canvas.print_to_buffer()
490
+
491
+ buffer = np.frombuffer(s, dtype="uint8")
492
+
493
+ img_rgba = buffer.reshape(height, width, 4)
494
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
495
+ return rgb.astype("uint8")
496
+
497
+
498
+ class Visualizer:
499
+ def __init__(self, img_rgb, metadata=None, scale=1.0):
500
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
501
+ self.font_path = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
502
+ self.output = VisImage(self.img, scale=scale)
503
+ self.cpu_device = torch.device("cpu")
504
+
505
+ # too small texts are useless, therefore clamp to 14
506
+ self._default_font_size = max(
507
+ np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
508
+ )
509
+
510
+ def draw_text(
511
+ self,
512
+ text,
513
+ position,
514
+ *,
515
+ font_size=None,
516
+ color="g",
517
+ horizontal_alignment="center",
518
+ rotation=0,
519
+ ):
520
+ if not font_size:
521
+ font_size = self._default_font_size
522
+
523
+ # since the text background is dark, we don't want the text to be dark
524
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
525
+ color[np.argmax(color)] = max(0.8, np.max(color))
526
+
527
+ x, y = position
528
+ self.output.ax.text(
529
+ x,
530
+ y,
531
+ text,
532
+ size=font_size * self.output.scale,
533
+ fontproperties=FontProperties(fname=self.font_path),
534
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
535
+ verticalalignment="top",
536
+ horizontalalignment=horizontal_alignment,
537
+ color=color,
538
+ zorder=10,
539
+ rotation=rotation,
540
+ )
541
+ return self.output
542
+
543
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
544
+
545
+ x0, y0, x1, y1 = box_coord
546
+ width = x1 - x0
547
+ height = y1 - y0
548
+
549
+ linewidth = max(self._default_font_size / 4, 1)
550
+
551
+ self.output.ax.add_patch(
552
+ mpl.patches.Rectangle(
553
+ (x0, y0),
554
+ width,
555
+ height,
556
+ fill=False,
557
+ edgecolor=edge_color,
558
+ linewidth=linewidth * self.output.scale,
559
+ alpha=alpha,
560
+ linestyle=line_style,
561
+ )
562
+ )
563
+ return self.output
564
+
565
+ def get_output(self):
566
+
567
+ return self.output
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 8192,
3
+ "tokenizer_class": "QWenTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_qwen.QWenTokenizer",
7
+ null
8
+ ]
9
+ }
10
+ }
visual.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from collections import OrderedDict
7
+ import math
8
+ import requests
9
+ from io import BytesIO
10
+ from functools import partial
11
+ from PIL import Image
12
+ from typing import Callable, Optional, Sequence, Tuple, List
13
+ import numpy as np
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.init import trunc_normal_
19
+ from torchvision import transforms
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+
23
+ def get_abs_pos(abs_pos, tgt_size):
24
+ # abs_pos: L, C
25
+ # tgt_size: M
26
+ # return: M, C
27
+ src_size = int(math.sqrt(abs_pos.size(0)))
28
+ tgt_size = int(math.sqrt(tgt_size))
29
+ dtype = abs_pos.dtype
30
+
31
+ if src_size != tgt_size:
32
+ return F.interpolate(
33
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
34
+ size=(tgt_size, tgt_size),
35
+ mode="bicubic",
36
+ align_corners=False,
37
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
38
+ else:
39
+ return abs_pos
40
+
41
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
42
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
43
+ """
44
+ grid_size: int of the grid height and width
45
+ return:
46
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
47
+ """
48
+ grid_h = np.arange(grid_size, dtype=np.float32)
49
+ grid_w = np.arange(grid_size, dtype=np.float32)
50
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
51
+ grid = np.stack(grid, axis=0)
52
+
53
+ grid = grid.reshape([2, 1, grid_size, grid_size])
54
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
55
+ if cls_token:
56
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
57
+ return pos_embed
58
+
59
+
60
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
61
+ assert embed_dim % 2 == 0
62
+
63
+ # use half of dimensions to encode grid_h
64
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
65
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
66
+
67
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
68
+ return emb
69
+
70
+
71
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
72
+ """
73
+ embed_dim: output dimension for each position
74
+ pos: a list of positions to be encoded: size (M,)
75
+ out: (M, D)
76
+ """
77
+ assert embed_dim % 2 == 0
78
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
79
+ omega /= embed_dim / 2.
80
+ omega = 1. / 10000**omega # (D/2,)
81
+
82
+ pos = pos.reshape(-1) # (M,)
83
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
84
+
85
+ emb_sin = np.sin(out) # (M, D/2)
86
+ emb_cos = np.cos(out) # (M, D/2)
87
+
88
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
89
+ return emb
90
+
91
+
92
+ class Resampler(nn.Module):
93
+ """
94
+ A 2D perceiver-resampler network with one cross attention layers by
95
+ (grid_size**2) learnable queries and 2d sincos pos_emb
96
+ Outputs:
97
+ A tensor with the shape of (grid_size**2, embed_dim)
98
+ """
99
+ def __init__(
100
+ self,
101
+ grid_size,
102
+ embed_dim,
103
+ num_heads,
104
+ kv_dim=None,
105
+ norm_layer=nn.LayerNorm
106
+ ):
107
+ super().__init__()
108
+ self.num_queries = grid_size ** 2
109
+ self.embed_dim = embed_dim
110
+ self.num_heads = num_heads
111
+
112
+ self.pos_embed = nn.Parameter(
113
+ torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
114
+ ).requires_grad_(False)
115
+
116
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
117
+ trunc_normal_(self.query, std=.02)
118
+
119
+ if kv_dim is not None and kv_dim != embed_dim:
120
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
121
+ else:
122
+ self.kv_proj = nn.Identity()
123
+
124
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
125
+ self.ln_q = norm_layer(embed_dim)
126
+ self.ln_kv = norm_layer(embed_dim)
127
+
128
+ self.apply(self._init_weights)
129
+
130
+ def _init_weights(self, m):
131
+ if isinstance(m, nn.Linear):
132
+ trunc_normal_(m.weight, std=.02)
133
+ if isinstance(m, nn.Linear) and m.bias is not None:
134
+ nn.init.constant_(m.bias, 0)
135
+ elif isinstance(m, nn.LayerNorm):
136
+ nn.init.constant_(m.bias, 0)
137
+ nn.init.constant_(m.weight, 1.0)
138
+
139
+ def forward(self, x, attn_mask=None):
140
+
141
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
142
+
143
+ x = self.kv_proj(x)
144
+ x = self.ln_kv(x).permute(1, 0, 2)
145
+
146
+ N = x.shape[1]
147
+ q = self.ln_q(self.query)
148
+ out = self.attn(
149
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
150
+ x + pos_embed.unsqueeze(1),
151
+ x,
152
+ attn_mask=attn_mask)[0]
153
+ return out.permute(1, 0, 2)
154
+
155
+ def _repeat(self, query, N: int):
156
+ return query.unsqueeze(1).repeat(1, N, 1)
157
+
158
+
159
+ class VisualAttention(nn.Module):
160
+ """self-attention layer class.
161
+
162
+ Self-attention layer takes input with size [s, b, h]
163
+ and returns output of the same size.
164
+ """
165
+
166
+ def __init__(self, embed_dim, num_heads,
167
+ bias=True, kdim=None, vdim=None):
168
+ super(VisualAttention, self).__init__()
169
+ self.embed_dim = embed_dim
170
+ self.kdim = kdim if kdim is not None else embed_dim
171
+ self.vdim = vdim if vdim is not None else embed_dim
172
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
173
+
174
+ self.num_heads = num_heads
175
+
176
+ # Per attention head and per partition values.
177
+ assert embed_dim % num_heads == 0
178
+ self.hidden_size_per_attention_head = embed_dim // num_heads
179
+ self.num_attention_heads_per_partition = num_heads
180
+ self.hidden_size_per_partition = embed_dim
181
+
182
+ # Strided linear layer.
183
+ assert self._qkv_same_embed_dim, 'Only Support SelfAttention Currently'
184
+ self.in_proj = nn.Linear(embed_dim, 3 * embed_dim)
185
+ self.out_proj = nn.Linear(embed_dim, embed_dim)
186
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
187
+
188
+ def forward(self, query, key, value, attn_mask = None):
189
+ # query/key/value: [sq, b, h]
190
+ sq, b, _ = query.size()
191
+
192
+ assert query is key, 'Only Support Self-Attention Currently'
193
+ sk = sq
194
+ mixed_x_layer = self.in_proj(query)
195
+
196
+ # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
197
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
198
+ (self.num_attention_heads_per_partition,
199
+ 3 * self.hidden_size_per_attention_head)
200
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
201
+
202
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
203
+ query_layer, key_layer, value_layer = mixed_x_layer.split(
204
+ self.hidden_size_per_attention_head, dim=-1)
205
+
206
+ # [sq, b, np, hn] -> [sq, b * np, hn]
207
+ query_layer = query_layer.view(sq,
208
+ b * self.num_attention_heads_per_partition,
209
+ self.hidden_size_per_attention_head).transpose(0, 1)
210
+ # [sk, b, np, hn] -> [sk, b * np, hn]
211
+ key_layer = key_layer.view(sk,
212
+ b * self.num_attention_heads_per_partition,
213
+ self.hidden_size_per_attention_head).transpose(0, 1)
214
+
215
+ q_scaled = query_layer / self.norm_factor
216
+ if attn_mask is not None:
217
+ attention_probs = torch.baddbmm(attn_mask, q_scaled, key_layer.transpose(-2, -1))
218
+ else:
219
+ attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
220
+ attention_probs = attention_probs.softmax(dim=-1)
221
+
222
+ value_layer = value_layer.view(sk,
223
+ b * self.num_attention_heads_per_partition,
224
+ self.hidden_size_per_attention_head).transpose(0, 1)
225
+
226
+ # matmul: [b * np, sq, hn]
227
+ context_layer = torch.bmm(attention_probs, value_layer)
228
+
229
+ # change view [b, np, sq, hn]
230
+ context_layer = context_layer.view(b,
231
+ self.num_attention_heads_per_partition,
232
+ sq, self.hidden_size_per_attention_head)
233
+
234
+ # [b, np, sq, hn] --> [sq, b, np, hn]
235
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
236
+
237
+ # [sq, b, np, hn] --> [sq, b, hp]
238
+ new_context_layer_shape = context_layer.size()[:-2] + \
239
+ (self.hidden_size_per_partition,)
240
+ context_layer = context_layer.view(*new_context_layer_shape)
241
+
242
+ output = self.out_proj(context_layer)
243
+
244
+ return output
245
+
246
+
247
+ class VisualAttentionBlock(nn.Module):
248
+ def __init__(
249
+ self,
250
+ d_model: int,
251
+ n_head: int,
252
+ mlp_ratio: float = 4.0,
253
+ act_layer: Callable = nn.GELU,
254
+ norm_layer: Callable = nn.LayerNorm,
255
+ is_cross_attention: bool = False,
256
+ ):
257
+ super().__init__()
258
+
259
+ self.ln_1 = norm_layer(d_model)
260
+ if is_cross_attention:
261
+ self.ln_1_kv = norm_layer(d_model)
262
+
263
+ self.ln_2 = norm_layer(d_model)
264
+ mlp_width = int(d_model * mlp_ratio)
265
+ self.attn = VisualAttention(d_model, n_head)
266
+ self.mlp = nn.Sequential(OrderedDict([
267
+ ("c_fc", nn.Linear(d_model, mlp_width)),
268
+ ("gelu", act_layer()),
269
+ ("c_proj", nn.Linear(mlp_width, d_model))
270
+ ]))
271
+
272
+ def attention(
273
+ self,
274
+ q_x: torch.Tensor,
275
+ k_x: Optional[torch.Tensor] = None,
276
+ v_x: Optional[torch.Tensor] = None,
277
+ attn_mask: Optional[torch.Tensor] = None,
278
+ ):
279
+ k_x = k_x if k_x is not None else q_x
280
+ v_x = v_x if v_x is not None else q_x
281
+
282
+ attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
283
+ return self.attn(q_x, k_x, v_x, attn_mask=attn_mask)
284
+
285
+ def forward(
286
+ self,
287
+ q_x: torch.Tensor,
288
+ k_x: Optional[torch.Tensor] = None,
289
+ v_x: Optional[torch.Tensor] = None,
290
+ attn_mask: Optional[torch.Tensor] = None,
291
+ ):
292
+ k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
293
+ v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
294
+
295
+ x = q_x + self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
296
+ x = x + self.mlp(self.ln_2(x))
297
+ return x
298
+
299
+
300
+ class TransformerBlock(nn.Module):
301
+ def __init__(
302
+ self,
303
+ width: int,
304
+ layers: int,
305
+ heads: int,
306
+ mlp_ratio: float = 4.0,
307
+ act_layer: Callable = nn.GELU,
308
+ norm_layer: Callable = nn.LayerNorm,
309
+ ):
310
+ super().__init__()
311
+ self.width = width
312
+ self.layers = layers
313
+
314
+ self.resblocks = nn.ModuleList([
315
+ VisualAttentionBlock(
316
+ width, heads, mlp_ratio, act_layer=act_layer, norm_layer=norm_layer)
317
+ for _ in range(layers)
318
+ ])
319
+
320
+ def get_cast_dtype(self) -> torch.dtype:
321
+ return self.resblocks[0].mlp.c_fc.weight.dtype
322
+
323
+ def get_cast_device(self) -> torch.device:
324
+ return self.resblocks[0].mlp.c_fc.weight.device
325
+
326
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
327
+ for r in self.resblocks:
328
+ x = r(x, attn_mask=attn_mask)
329
+ return x
330
+
331
+
332
+ class VisionTransformer(nn.Module):
333
+
334
+ def __init__(
335
+ self,
336
+ image_size: int,
337
+ patch_size: int,
338
+ width: int,
339
+ layers: int,
340
+ heads: int,
341
+ mlp_ratio: float,
342
+ n_queries: int = 256,
343
+ output_dim: int = 512,
344
+ **kwargs
345
+ ):
346
+ super().__init__()
347
+ image_height, image_width = self.image_size = (image_size, image_size)
348
+ patch_height, patch_width = self.patch_size = (patch_size, patch_size)
349
+ self.grid_size = (image_height // patch_height, image_width // patch_width)
350
+ self.output_dim = output_dim
351
+
352
+ mean = (0.48145466, 0.4578275, 0.40821073)
353
+ std = (0.26862954, 0.26130258, 0.27577711)
354
+ self.image_transform = transforms.Compose([
355
+ transforms.Resize(
356
+ (image_size, image_size),
357
+ interpolation=InterpolationMode.BICUBIC
358
+ ),
359
+ transforms.ToTensor(),
360
+ transforms.Normalize(mean=mean, std=std),
361
+ ])
362
+
363
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
364
+
365
+ # class embeddings and positional embeddings
366
+ scale = width ** -0.5
367
+ self.positional_embedding = nn.Parameter(scale * torch.randn(256, width))
368
+
369
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
370
+ act_layer = nn.GELU
371
+
372
+ self.ln_pre = norm_layer(width)
373
+ self.transformer = TransformerBlock(
374
+ width,
375
+ layers,
376
+ heads,
377
+ mlp_ratio,
378
+ act_layer=act_layer,
379
+ norm_layer=norm_layer,
380
+ )
381
+
382
+ self.attn_pool = Resampler(
383
+ grid_size=int(math.sqrt(n_queries)),
384
+ embed_dim=output_dim,
385
+ num_heads=output_dim // 128,
386
+ kv_dim=width,
387
+ norm_layer=norm_layer,
388
+ )
389
+ self.ln_post = norm_layer(output_dim)
390
+ self.proj = nn.Parameter((output_dim** -0.5) * torch.randn(output_dim, output_dim))
391
+
392
+ def forward(self, x: torch.Tensor):
393
+ x = x.to(
394
+ dtype=self.transformer.get_cast_dtype(),
395
+ device=self.transformer.get_cast_device(),
396
+ )
397
+ # to patches
398
+ x = self.conv1(x) # shape = [*, width, grid, grid]
399
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
400
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
401
+
402
+ x = x + get_abs_pos(self.positional_embedding, x.size(1))
403
+
404
+ x = self.ln_pre(x)
405
+
406
+ x = x.permute(1, 0, 2) # NLD -> LND
407
+ x = self.transformer(x)
408
+ x = x.permute(1, 0, 2) # LND -> NLD
409
+
410
+ x = self.attn_pool(x)
411
+ x = self.ln_post(x)
412
+ x = x @ self.proj
413
+
414
+ return x
415
+
416
+ def encode(self, image_paths: List[str]):
417
+ images = []
418
+ for image_path in image_paths:
419
+ if image_path.startswith("http://") or image_path.startswith("https://"):
420
+ image = Image.open(requests.get(image_path, stream=True).raw)
421
+ else:
422
+ image = Image.open(image_path)
423
+ image = image.convert("RGB")
424
+ images.append(self.image_transform(image))
425
+ images = torch.stack(images, dim=0)
426
+ return self(images)