yano0 commited on
Commit
9d61cad
1 Parent(s): fc1ff3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -57
README.md CHANGED
@@ -15,42 +15,32 @@ datasets:
15
  - hpprc/mqa-ja
16
  - google-research-datasets/paws-x
17
  ---
 
18
 
19
- ## Model Details
20
- This is a text embedding model based on RoFormer with a maximum input sequence length of 1024.
21
- The model is pre-trained with Wikipedia and cc100 and fine-tuned as a sentence embedding model.
22
- Fine-tuning begins with weakly supervised learning using mc4 and MQA.
23
- After that, we perform the same 3-stage learning process as [GLuCoSE v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2).
24
 
25
- ### Model Description
26
- - **Model Type:** Sentence Transformer
27
- - **Maximum Sequence Length:** 1024 tokens
28
- - **Output Dimensionality:** 768 tokens
29
- - **Similarity Function:** Cosine Similarity
30
- <!-- - **Training Dataset:** Unknown -->
31
- <!-- - **Language:** Unknown -->
32
- <!-- - **License:** Unknown -->
33
 
34
- ### Model Sources
 
 
 
35
 
36
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
37
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
38
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
39
 
40
- ### Full Model Architecture
41
 
42
- ```
43
- SentenceTransformer(
44
- (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel
45
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
46
- )
47
- ```
48
 
49
  ## Usage
50
 
51
  ### Direct Usage (Sentence Transformers)
52
 
53
- You can perform inference using SentenceTransformers with the following code:
54
 
55
  ```python
56
  from sentence_transformers import SentenceTransformer
@@ -79,6 +69,7 @@ print(similarities)
79
  # [0.5910, 1.0000, 0.4977, 0.6969],
80
  # [0.4332, 0.4977, 1.0000, 0.7475],
81
  # [0.5421, 0.6969, 0.7475, 1.0000]]
 
82
  ```
83
 
84
  ### Direct Usage (Transformers)
@@ -124,64 +115,78 @@ print(similarities)
124
  # [0.5910, 1.0000, 0.4977, 0.6969],
125
  # [0.4332, 0.4977, 1.0000, 0.7475],
126
  # [0.5421, 0.6969, 0.7475, 1.0000]]
 
127
  ```
128
 
129
- <!--
130
- ### Downstream Usage (Sentence Transformers)
 
 
 
131
 
132
- You can finetune this model on your own dataset.
 
133
 
134
- <details><summary>Click to expand</summary>
135
 
136
- </details>
137
- -->
138
 
139
- <!--
140
- ### Out-of-Scope Use
141
 
142
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
143
- -->
144
 
145
- <!--
146
- ## Bias, Risks and Limitations
147
 
148
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
149
- -->
150
 
151
- <!--
152
- ### Recommendations
153
 
154
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
155
- -->
 
156
 
157
  ## Benchmarks
158
 
 
159
 
160
- ### Retieval
161
  Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) , [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
162
 
163
- | model | size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | JaCWIR<br>MAP@10 | MLDR<br>nDCG@10 |
164
- |:--:|:--:|:--:|:--:|:--:|:----:|
165
- | [mE5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | **84.2** | 47.2 | **85.3** | 25.4 |
166
- | [GLuCoSE](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 53.3 | 30.8 | 68.6 | 25.2 |
167
- |[ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 74.3 | **58.1** | 84.6 | **35.3** |
 
 
 
168
  | RoSEtta | 0.2B | 79.3 | 57.7 | 83.8 | 32.3 |
169
 
 
170
 
171
  ### JMTEB
172
- Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
173
- * The time-consuming datasets ['amazon_review_classification', 'mrtydi', 'jaqket', 'esci'] were excluded, and the evaluation was conducted on the other 12 datasets.
174
- * The average is a macro-average per task.
175
 
176
- | model | size | Class. | Ret. | STS. | Clus. | Pair. | Avg. |
177
- |:--:|:--:|:--:|:--:|:----:|:-------:|:-------:|:------:|
178
- | [mE5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | 75.1 | 80.6 | 80.5 | **52.6** | 62.4 | 70.2 |
179
- | [GLuCoSE](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | **82.6** | 69.8 | 78.2 | 51.5 | **66.2** | 69.7 |
180
- | RoSEtta | 0.2B | 79.0 | **84.3** | **81.4** | **53.2** | 61.7 | **71.9** |
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
  ## Authors
 
184
  Chihiro Yano, Mocho Go, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
185
 
186
  ## License
 
187
  This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
 
15
  - hpprc/mqa-ja
16
  - google-research-datasets/paws-x
17
  ---
18
+ # RoSEtta
19
 
20
+ RoSEtta (**Ro**Former-based **S**entence **E**ncoder **t**hrough Dis**t**ill**a**tion) is a general Japanese text embedding model, excelling in retrieval tasks. It has a maximum sequence length of 1024, allowing for input of long sentences. It can run on a CPU and is designed to measure semantic similarity between sentences, as well as to function as a retrieval system for searching passages based on queries.
 
 
 
 
21
 
22
+ Key features:
 
 
 
 
 
 
 
23
 
24
+ - Use RoPE (Rotary Position Embedding)
25
+ - Maximum sequence length of 1024 tokens
26
+ - Distilled from large sentence embedding models
27
+ - Specialized for retrieval tasks
28
 
29
+ During inference, the prefix "query: " or "passage: " is required. Please check the Usage section for details.
 
 
30
 
31
+ ## Model Description
32
 
33
+ This model is based on RoFormer architecture. After pre-training using MLM loss, weakly supervised learning was performed. Additionally, further training was conducted through distillation using several large embedding models and multi-stage contrastive learning (like [GLuCoSE v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2)).
34
+
35
+ - **Maximum Sequence Length:** 1024 tokens
36
+ - **Output Dimensionality:** 768 tokens
37
+ - **Similarity Function:** Cosine Similarity
 
38
 
39
  ## Usage
40
 
41
  ### Direct Usage (Sentence Transformers)
42
 
43
+ You can perform inference using SentenceTransformer with the following code:
44
 
45
  ```python
46
  from sentence_transformers import SentenceTransformer
 
69
  # [0.5910, 1.0000, 0.4977, 0.6969],
70
  # [0.4332, 0.4977, 1.0000, 0.7475],
71
  # [0.5421, 0.6969, 0.7475, 1.0000]]
72
+
73
  ```
74
 
75
  ### Direct Usage (Transformers)
 
115
  # [0.5910, 1.0000, 0.4977, 0.6969],
116
  # [0.4332, 0.4977, 1.0000, 0.7475],
117
  # [0.5421, 0.6969, 0.7475, 1.0000]]
118
+
119
  ```
120
 
121
+ ## Training Details
122
+
123
+ The fine-tuning of RoSEtta is carried out through the following steps:
124
+
125
+ **Step 1: Pre-training**
126
 
127
+ - The model is pre-trained based on RoFormer architecture.
128
+ - Training data: [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch/) and [cc100](https://data.statmt.org/cc-100/).
129
 
130
+ **Step 2: Weakly supervised learning**
131
 
132
+ - Training data: [MQA](https://huggingface.co/datasets/clips/mqa) and [mc4](https://huggingface.co/datasets/legacy-datasets/mc4).
 
133
 
134
+ **Step 3: Ensemble distillation**
 
135
 
136
+ - The embedded representation was distilled using [E5-mistral](https://huggingface.co/intfloat/e5-mistral-7b-instruct), [gte-Qwen2](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct), and [mE5-large](https://huggingface.co/intfloat/multilingual-e5-large) as teacher models.
 
137
 
138
+ **Step 4: Contrastive learning**
 
139
 
140
+ - Triplets were created from [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88), [MNLI](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7), [PAWS-X](https://huggingface.co/datasets/paws-x), [JSeM](https://github.com/DaisukeBekki/JSeM) and [Mr.TyDi](https://huggingface.co/datasets/castorini/mr-tydi) and used for training.
141
+ - This training aimed to improve the overall performance as a sentence embedding model.
142
 
143
+ **Step 5: Search-specific contrastive learning**
 
144
 
145
+ - In order to make the model more robust to the retrieval task, additional two-stage training with QA and retrieval task was conducted.
146
+ - In the first stage, the synthetic dataset [auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) was used for training,
147
+ while in the second stage, [JQaRA](https://huggingface.co/datasets/hotchpotch/JQaRA), [MQA](https://huggingface.co/datasets/hpprc/mqa-ja), [Japanese Wikipedia Human Retrieval, Mr.TyDi,MIRACL, Quiz Works and Quiz No Mor](https://huggingface.co/datasets/hpprc/emb)i were used.
148
 
149
  ## Benchmarks
150
 
151
+ ### Retrieval
152
 
 
153
  Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) , [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
154
 
155
+ | Model | Size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | JaCWIR<br>MAP@10 | MLDR<br>nDCG@10 |
156
+ | :---: | :---: | :---: | :---: | :---: | :---: |
157
+ | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.6B | 89.2 | 55.4 | **87.6** | 29.8 |
158
+ | [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) | 0.3B | 78.7 | 62.4 | 85.0 | **37.5** |
159
+ | | | | | | |
160
+ | [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | **84.2** | 47.2 | **85.3** | 25.4 |
161
+ | [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 74.3 | **58.1** | 84.6 | **35.3** |
162
+ | [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 53.3 | 30.8 | 68.6 | 25.2 |
163
  | RoSEtta | 0.2B | 79.3 | 57.7 | 83.8 | 32.3 |
164
 
165
+ Note: Results for OpenAI small embeddings in JQARA and JaCWIR are quoted from the [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR).
166
 
167
  ### JMTEB
 
 
 
168
 
169
+ Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
 
 
 
 
170
 
171
+ The average score is macro-average.
172
+
173
+ | Model | Size | Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
174
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
175
+ | OpenAI/text-embedding-3-small | - | 69.18 | 66.39 | 79.46 | 73.06 | 92.92 | 51.06 | 62.27 |
176
+ | OpenAI/text-embedding-3-large | - | 74.05 | 74.48 | 82.52 | 77.58 | 93.58 | 53.32 | 62.35 |
177
+ | | | | | | | | | |
178
+ | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.6B | 70.90 | 70.98 | 79.70 | 72.89 | 92.96 | 51.24 | 62.15 |
179
+ | [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) | 0.3B | 73.31 | 73.02 | 83.13 | 77.43 | 92.99 | 51.82 | 62.29 |
180
+ | | | | | | | | | |
181
+ | [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | 68.61 | 68.21 | 79.84 | 69.30 | **92.85** | 48.26 | 62.26 |
182
+ | [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 71.91 | 69.82 | **82.87** | 75.58 | 92.91 | **54.16** | 62.38 |
183
+ | [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 67.29 | 59.02 | 78.71 | **76.82** | 91.90 | 49.78 | **66.39** |
184
+ | RoSEtta | 0.2B | **72.45** | **73.21** | 81.39 | 72.41 | 92.69 | 53.23 | 61.74 |
185
 
186
  ## Authors
187
+
188
  Chihiro Yano, Mocho Go, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
189
 
190
  ## License
191
+
192
  This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).