--- license: llama2 datasets: - pkupie/mc2_corpus - togethercomputer/RedPajama-Data-1T language: - en - mn base_model: - meta-llama/Llama-2-7b-hf --- A continually pre-trained model based on Llama-2-7b-hf. We use the **Traditional Mongolian texts** in MC^2 and **English texts** in RedPajama with a proportion of **4:1** for training. #### Hyper-parameters: * lr: 3e-5 * batch size: 1M (2K*512) * lr scheduler: cosine * min lr: 1e-6 * lr decay iters: 10240 ## Citation If you find this model is useful in your work, please cite it with: ``` @inproceedings{tao-etal-2024-unlocking, title = "Unlocking the Potential of Model Merging for Low-Resource Languages", author = "Tao, Mingxu and Zhang, Chen and Huang, Quzhe and Ma, Tianyao and Huang, Songfang and Zhao, Dongyan and Feng, Yansong", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.508", doi = "10.18653/v1/2024.findings-emnlp.508", pages = "8705--8720" } ```