--- license: mit tags: - generated_from_trainer datasets: - ner-tr metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-turkish-ner results: - task: name: Token Classification type: token-classification dataset: name: ner-tr type: ner-tr config: NERTR split: train args: NERTR metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- # distilbert-turkish-ner This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the ner-tr dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.5744 | 1.0 | 529 | 0.0058 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0094 | 2.0 | 1058 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0047 | 3.0 | 1587 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1