File size: 9,973 Bytes
0342dad 6d17dbb 0342dad 6d17dbb 0342dad 6d17dbb 0342dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from typing import Dict, List, Optional, Tuple, Union, Iterable
import numpy as np
import torch
import transformers
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
ChannelDimension,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
get_channel_dimension_axis,
make_list_of_images,
to_numpy_array,
valid_images,
)
from transformers.utils import is_torch_tensor
class FaceSegformerImageProcessor(BaseImageProcessor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.image_size = kwargs.get("image_size", (224, 224))
self.normalize_mean = kwargs.get("normalize_mean", [0.485, 0.456, 0.406])
self.normalize_std = kwargs.get("normalize_std", [0.229, 0.224, 0.225])
self.resample = kwargs.get("resample", PILImageResampling.BILINEAR)
self.data_format = kwargs.get("data_format", ChannelDimension.FIRST)
@staticmethod
def normalize(
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
max_pixel_value: float = 255.0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Copied from:
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/image_transforms.py#L209
BUT uses the formula from albumentations:
https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.Normalize
img = (img - mean * max_pixel_value) / (std * max_pixel_value)
"""
if not isinstance(image, np.ndarray):
raise ValueError("image must be a numpy array")
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
channel_axis = get_channel_dimension_axis(
image, input_data_format=input_data_format
)
num_channels = image.shape[channel_axis]
# We cast to float32 to avoid errors that can occur when subtracting uint8 values.
# We preserve the original dtype if it is a float type to prevent upcasting float16.
if not np.issubdtype(image.dtype, np.floating):
image = image.astype(np.float32)
if isinstance(mean, Iterable):
if len(mean) != num_channels:
raise ValueError(
f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}"
)
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Iterable):
if len(std) != num_channels:
raise ValueError(
f"std must have {num_channels} elements if it is an iterable, got {len(std)}"
)
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
# Uses max_pixel_value for normalization
if input_data_format == ChannelDimension.LAST:
image = (image - mean * max_pixel_value) / (std * max_pixel_value)
else:
image = ((image.T - mean * max_pixel_value) / (std * max_pixel_value)).T
image = (
to_channel_dimension_format(image, data_format, input_data_format)
if data_format is not None
else image
)
return image
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Copied from:
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain either 'shortest_edge' or 'height' and 'width'."
)
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def __call__(self, images: ImageInput, masks: ImageInput = None, **kwargs):
"""
Adapted from:
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py
"""
# single to iterable if needed
images = make_list_of_images(images)
# validate
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# make numpy arrays
images = [to_numpy_array(image) for image in images]
# get channel dimensions
input_data_format = kwargs.get("input_data_format")
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# check if training
# todo: can also assume if masks are passed that we are doing training?
if kwargs.get("do_training", False) is True:
if mask is None:
raise ValueError("must pass masks if doing training.")
# todo: implement this soon.
raise NotImplementedError("not yet implemented.")
# Assume we want to do all transformations for training
else:
# do transformations for inference...
images = [
self.resize(
image=image,
size={"height": self.image_size[0], "width": self.image_size[1]},
resample=kwargs.get("resample") or self.resample,
input_data_format=input_data_format,
)
for image in images
]
images = [
self.normalize(
image=image,
mean=kwargs.get("normalize_mean") or self.normalize_mean,
std=kwargs.get("normalize_std") or self.normalize_std,
input_data_format=input_data_format,
)
for image in images
]
# fix dimensions
images = [
to_channel_dimension_format(
image,
kwargs.get("data_format") or self.data_format,
input_channel_dim=input_data_format,
)
for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type="pt")
# Copied from transformers.models.segformer.image_processing_segformer.SegformerImageProcessor.post_process_semantic_segmentation
def post_process_semantic_segmentation(
self, outputs, target_sizes: List[Tuple] = None
):
"""
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`SegformerForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0),
size=target_sizes[idx],
mode="bilinear",
align_corners=False,
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [
semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])
]
return semantic_segmentation
|