File size: 3,655 Bytes
12ca3b8
 
 
d1abd57
12ca3b8
d1abd57
 
4284c9b
d1abd57
 
 
 
 
 
 
 
 
4284c9b
 
d1abd57
 
4284c9b
 
 
d1abd57
 
 
4284c9b
 
d1abd57
 
 
 
 
 
4284c9b
 
397cbf3
 
 
 
 
 
 
 
 
 
 
12ca3b8
 
 
4284c9b
12ca3b8
d1abd57
 
12ca3b8
622444d
12ca3b8
 
 
 
 
 
 
4284c9b
 
12ca3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e225df6
 
 
 
 
 
 
 
 
 
 
 
 
12ca3b8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: bigscience-bloom-rail-1.0
tags:
- text generation
- generated_from_trainer
- email generation
- email
- emailgen
datasets:
- aeslc
- postbot/multi-emails-100k

widget:
- text: "Good Morning Professor Beans,

Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam"
  example_title: "email to prof"
- text: "嘿<NAME>\n\n感谢你注册我的每周通讯。在我们开始之前,你必须确认你的电子邮件地址。." 
  example_title: "通讯"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and ask about office hours" 
  example_title: "office hours"
- text: "Grüße <NAME>,\n\nIch hoffe, du hattest einen schönen Abend beim Wurstessen der Firma. Ich melde mich, weil"
  example_title: "Wurstessen festival"
- text: "Guten Morgen Harold,\n\nich habe mich gefragt, wann die nächste"
  example_title: "event"
- text: "URGENT - I need the TPS reports"
  example_title: "URGENT"
- text: "Hoi Archibald,\n\nik hoop dat deze e-mail je goed doet." 
  example_title: "e-mails die je vinden"
- text: "Hello there.\n\nI just wanted to reach out and check in to"
  example_title: "checking in"
- text: "Hello <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if you've enjoyed your time with us"
  example_title: "work well"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if we could catch up"
  example_title: "catch up"
- text: "Jestem <NAME>,\n\nWłaśnie wprowadziłem się do obszaru i chciałem dotrzeć i uzyskać kilka szczegółów na temat tego, gdzie mogę dostać artykuły spożywcze i"
  example_title: "zakupy spożywcze"
parameters:
  min_length: 32
  max_length: 128
  no_repeat_ngram_size: 2
  do_sample: True
  temperature: 0.2
  top_k: 20
  top_p: 0.95
  repetition_penalty: 3.5
  length_penalty: 0.9
  
---


# bloom-1b1-emailgen - v1 

This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on the ` postbot/multi-emails-100k` dataset.

It achieves the following results on the evaluation set:
- Loss: 1.7397

## Model description

More information needed

## Intended uses & limitations

- **this model did not have any of the original layers frozen during training**
  - while this is still an area of investigation, the model likely needs to have some layers frozen during fine-tuning to retain the multilingual capabilities in balance with learning how to write emails.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8465        | 1.0   | 256  | 1.8656          |
| 1.4903        | 2.0   | 512  | 1.7396          |


### details

```md
***** eval metrics *****  

  epoch                   =        2.0  
  eval_loss               =     1.7397
  eval_runtime            = 0:04:27.41
  eval_samples            =       4216
  eval_samples_per_second =     15.766
  eval_steps_per_second   =     15.766
  perplexity              =     5.6956
```
### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1