Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
TuringsSolutionsΒ 
posted an update Oct 3, 2024
Post
1890
Hyperdimensional Computing + Neural Network, tell your friends. To my knowledge, this is a completely novel implementation of HDC+Neural Networks. It would be a direct competitor to Transformers. It is off the charts more computationally efficient than Transformers could ever hope to be (which is why I tested it in the first place). It is far more similar to biological processes. My testing so far shows that it works surprisingly well. One surprise so far from my testing, adding an Attention Mechanism to the model does nothing at all. Weirdest thing. Like 1% performance increase. I guess Attention Is Not All You Need?


I made a Github repository for my Hyperdimensional Computing Neural Network: https://github.com/RichardAragon/HyperDimensionalComputingNeuralNetwork


I made a YouTube video showcasing the model and some of my experiments with it: https://youtu.be/Eg51o519zVM

@teknium @Sephfox @rombodawg @MrDragonFox @numen-tech @hf-staff πŸ€”

Could this replace transformers in the future? πŸ˜‹

Β·

I wrote a script to pretrain a model using this using an alpaca formatted dataset like my dataset bellow. It takes way to much ram for me to run though.

https://huggingface.co/datasets/Replete-AI/Everything_Instruct

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.optim import AdamW
from tqdm import tqdm
import numpy as np
import json

# Hyperdimensional Computing class
class HDComputing:
    def __init__(self, dim):
        self.dim = dim

    def random_hv(self):
        return np.random.choice([-1, 1], size=self.dim)

    def bind(self, hv1, hv2):
        return hv1 * hv2

    def bundle(self, hvs):
        return np.sign(np.sum(hvs, axis=0))

# HDCNN model
class HDCNNClassifier(nn.Module):
    def __init__(self, dim, num_classes):
        super(HDCNNClassifier, self).__init__()
        self.fc1 = nn.Linear(dim, 512)
        self.activation = nn.ReLU()
        self.dropout = nn.Dropout(p=0.5)
        self.fc2 = nn.Linear(512, num_classes)

    def forward(self, x):
        out = self.fc1(x)
        out = self.activation(out)
        out = self.dropout(out)
        out = self.fc2(out)
        return out
    
class CustomDataset(Dataset):
    def __init__(self, data, hd_computer, max_seq_len):
        self.data = data
        self.hd_computer = hd_computer
        self.max_seq_len = max_seq_len
        self.vocab = self.build_vocab()
        self.token_hvs = {token: self.hd_computer.random_hv() for token in self.vocab}

    def build_vocab(self):
        vocab = set()
        for item in self.data:
            text = f"{item['instruction']} {item['input']} {item['output']}"
            vocab.update(text.split())
        return list(vocab)

    def encode_text(self, text):
        tokens = text.split()[:self.max_seq_len]
        hvs = [self.token_hvs.get(token, self.hd_computer.random_hv()) for token in tokens]
        return self.hd_computer.bundle(hvs)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        text = f"{item['instruction']} {item['input']} {item['output']}"
        encoded = self.encode_text(text)
        return torch.tensor(encoded, dtype=torch.float32), 0  # Placeholder label

# Progress Bar
class ProgressBar:
    def __init__(self, total_steps):
        self.pbar = tqdm(total=total_steps, desc="Training Progress", unit="step")

    def update(self):
        self.pbar.update(1)

    def close(self):
        self.pbar.close()

if __name__ == "__main__":
    # Load the dataset
    dataset_path = "E:/DATASETS/Everything-Instruct.json"
    dataset = []
    with open(dataset_path, 'r', encoding='utf-8') as f:
        for line in f:
            dataset.append(json.loads(line.strip()))

    # Initialize HD Computing
    hd_dim = 5000
    hd_computer = HDComputing(hd_dim)

    # Create custom dataset
    custom_dataset = CustomDataset(dataset, hd_computer, max_seq_len=8192)

    # Create data loader
    batch_size = 32
    dataloader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=True)

    # Initialize model
    num_classes = 1  # Adjust based on your task
    model = HDCNNClassifier(hd_dim, num_classes)

    # Training setup
    num_epochs = 5
    learning_rate = 2e-4
    optimizer = AdamW(model.parameters(), lr=learning_rate)
    criterion = nn.MSELoss()  # Adjust based on your task

    # Calculate total steps for the progress bar
    total_steps = len(custom_dataset) // batch_size * num_epochs
    progress_bar = ProgressBar(total_steps)

    # Training loop
    model.train()
    for epoch in range(num_epochs):
        for batch in dataloader:
            inputs, labels = batch
            outputs = model(inputs)
            loss = criterion(outputs, labels.float().unsqueeze(1))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            progress_bar.update()

    progress_bar.close()

    # Save the model
    torch.save(model.state_dict(), "E:/models/HD_model.pth")

    print("Training completed and model saved.")